

Rapport

Parc photovoltaïque à Guillon (89) – Site Grande Craie d'une emprise de 5 Ha

Etude géotechnique G2 AVP

Rapport n°117415/version A- Juin 2022

Projet suivi par Maxime MARTHE – 06.22.64.64.84 – maxime.marthe@anteagroup.fr

Fiche signalétique

Parc photovoltaïque à Guillon (89) – Site Grande Craie de 5Ha Etude géotechnique G2 AVP

CLIENT	SITE
LUXEL	Grande Craie
966 avenue Raymond Dugrand 34060 Montpellier	Commune de Cuiller (90)
Contact : Julie HARTMANN 06 74 77 90 09	- Commune de Guillon (89)
j.hartmann@luxel.fr	
RAPPORT D'ANTEA GROUP	
Responsable du projet	Laurence HUCHET

RAPPORT D'ANTEA GROU	P
Responsable du projet	Laurence HUCHET
Interlocuteur commercial	Maxime MARTHE
Rapport n°	117415
Version n°	version A
Votre commande et date	
Projet n°	BOUP220063

	Nom	Fonction	Date	Signature
Rédaction	A. KABORE	Ingénieur d'études	Mai 2022	Labour
Approbation	M. MARTHE	Responsable d'activités Infrastructures	Juin 2022	Just.

Suivi des modifications

Indice Version	Date de révision	Nombre de pages	Nombre d'annexes	Objet des modifications
Α	06/2022	48	6	Version initiale

Sommaire

1.	Intro	oductio	n	8
2.	Don	nées gé	nérales	g
	2.1.	Docun	nents consultés pour l'étude	9
		2.1.1.	Textes et documentation	g
		2.1.2.	Documents et données transmis par le client	10
	2.2.	Localis	sation du projet	10
3.	Con	texte d	u projet	11
	3.1.	Conte	xte géologique	11
	3.2.	Hydro	géologie	11
	3.3.	Aléas	géotechniques	12
		3.3.1.	Aléa retrait gonflement des argiles	12
		3.3.2.	Aléa remontée de nappe	12
		3.3.3.	Aléa cavités et mouvement de terrain	13
		3.3.4.	Aléa sismique	14
		3.3.5.	Profondeur hors gel	16
4.	Con	texte hi	storique et état actuel du site	17
	4.1.	Conte	xte historique du site	17
	4.2.	État a	ctuel du site d'étude	20
5.	Reco	onnaiss	ances géotechniques	22
	5.1.	Progra	ımme des investigations in situ	22
	5.2.	Analys	es en laboratoire	23
6.	Rési	ultats d	es reconnaissances	24
	6.1.	Litholo	ogie et caractéristiques mécaniques des formations	24
		6.1.1.	Sable limoneux à blocs calcaires et cailloux	24
		6.1.2.	Substratum Calcaire	24
	6.2.	Nivea	ux d'eau	25
	6.3.	Résult	ats des analyses en laboratoire	25
		6.3.1.	Essais d'identification et de détermination de l'Indice Portant Immédiat (IPI)	25
		6.3.2.	Agressivité des sols sur les aciers	26
		6.3.3.	Agressivité des sols vis -à-vis des bétons	28
	6.4.	Modè	e géotechnique de synthèse	29
7.	Desc	cription	du projet	30
	7.1.	Ouvra	ges et implantations	30
	7.2.	Tables	photovoltaï ques	31
	7.3.	Poste	de livraison et de transformation	32

8.	Etuc	le des fo	ondations des tables photovoltaïques	34
	8.1.	Descer	ntes de charges	34
	8.2.	Princip	e des fondations	34
	8.3.	Etude	des fondations semi profondes	34
		8.3.1.	Eléments de calcul	35
		8.3.2.	Hypothèse de calcul	35
		8.3.3.	Pré-dimensionnement	36
9.	Etuc	le des fo	ondations des postes de livraison et de transformation	37
	9.1.	Descer	ntes de charges	37
	9.2.	Ebauch	ne dimensionnelle des fondations des postes de livraison et de transformation	37
		9.2.1.	Mode de fondation	37
		9.2.2.	Prédimensionnement de poste de livraison et de livraison	41
10.	Préc	limensi	onnement des voiries	43
	10.1	.Généra	alités	43
	10.2	.Platefo	orme supérieure des terrassements	43
	10.3	.Réalisa	ation de la plateforme (PF) et couche de forme	44
	10.4	.Synthè	ese	44
11.	Sujé	tions d'	exécution et recommandations constructives	46
	11.1	.Gestio	n des eaux de surface	46
		11.1.1.	En phase chantier	46
		11.1.2.	En phase définitive	46
	11.2	.Terras	sements sur le site et plateformes	46
	11.3	.Adapta	ation au sol	47
		11.3.1.	Fondations profondes	47
		11.3.2.	Fondations sur radier	47
	11.4	.Précor	nisations après travaux	47
12.	Ench	naineme	ent des missions géotechniques	48

Table des figures

Figure 1 : Localisation géographique du projet	10
Figure 2 : Extrait de la carte géologique au 1/50 000 (infoterre.brgm.fr)	11
Figure 3 : Extrait de la carte aléa retrait/gonflement des argiles (source : Infoterre.brgm.fr)	12
Figure 4: Aléa remontée de nappe (Source : géorisques.gouv.fr)	13
Figure 5 : Extrait de la carte des cavités (source : Infoterre.brgm.fr)	14
Figure 6 : Extrait de la carte zonage sismique (Source : Infoterre.brgm.fr)	15
Figure 7: Carte de profondeur de mise hors gel (figure O.4.4.2 de la norme NF P 94 - 261)	16
Figure 8 : Photographies aériennes disponibles sur le site géoportail – 1953 et 1963	17
Figure 9 : photographies aériennes disponibles sur le site géoportail 1967 et 1970	18
Figure 10 : photographies aériennes disponibles sur le site géoportail 1978 et 1983	18
Figure 11 : photographies aériennes disponibles sur le site géoportail 1993 et 1994	19
Figure 12 : Accès au site d'étude	20
Figure 13 : Photographie de zones boisées sur le site – Antea Group, 05/05/2022	21
Figure 14 : Plan d'implantation des investigations géotechniques in-situ (Pressiomètres en rouge e	t
Pénétromètres en jaune, Fouilles en noir)	22
Figure 15: Histogramme de répartition des valeurs de pression limite et module pressiométrique –	-
Calcaire	24
Figure 16 : schéma type d'une installation photovoltaïque raccordée au réseau	30
Figure 17 : Plan de masse du projet	31
Figure 18 : Plan de coupes des postes de transformation (à droite) et de livraison (à gauche)	33
Table des tableaux	
Tableau 1 : Synthèse des résultats des essais pressiométrique – Calcaire	24
Tableau 2 : résultats des essais d'identification GTR et de l'IPI	25
Tableau 3 : Valeurs seuils de corrosivité selon DIN 50929-3	26
Tableau 4 : Evaluation du niveau de corrosivité selon DIN 50 929-3	27
Tableau 5: Valeurs seuils pour les classes d'exposition selon la norme NF EN 206-1	28
Tableau 6 : Résultats de l'analyse chimique des sols pour analyse de l'agressivité (NF EN 206 – 1)	28
Tableau 7: Hypothèses de calcul retenues dans Foxta pour les caractéristiques de sol	35
Tableau 8 : Pondération combinées des charges en traction et compression sur les pieux forés de	
Classe 1 – Cat.18	36
Tableau 9 : Résultats du prédimensionnement des micropieux forés	36
Tableau 10 : Coefficient partiel à prendre en compte dans la vérification de la portance du sol aux	
ELU et ELS	38
Tableau 11 : Inéquations devant être vérifiées pour la justification de la stabilité d'une fondation	
circulaire au renversement	39
Tableau 12 : Hypothèses de calcul pour la capacité portante	41
Tableau 13 : Contraintes admissibles du terrain et de calcul aux états limites des semelles	
superficielles isolées	41
Tableau 14 : Exemple de couche de forme pour obtenir une PF2	44

Table des annexes

Annexe I : Synoptique des missions d'ingénierie géotechnique NF P 94 500 de novembre 2013

Annexe II : Bordereaux des sondages pressiométriques

Annexe III : Bordereaux des sondages pénétrométriques

Annexe IV: Résultats des essais en laboratoire

Annexe V : Bordereaux des fouilles à la pelle mécanique

Annexe VI: Résultats des analyses de corrosion des aciers par les sols et d'agressivité des sols

sur les bétons

1. Introduction

La société LUXEL projette la construction de parc photovoltaïque au droit du site Grande Craie à Guillon-Terre-Plaine (89), d'une superficie d'environ 5Ha.

Le projet prévoit l'installation de modules photovoltaïques sur des structures fixes.. Les fondations des panneaux ne sont pas définies à ce stade, des pieux battus seront retenus dans l'idéal, ou des pieux forés si présence de calcaire dur affleurant.

La centrale sera également composée de postes de livraison et de transformation.

A la demande et pour le compte de LUXEL, Antea Group a réalisé une mission d'ingénierie géotechnique de phase avant-projet (G2 AVP selon la norme NF P94 500 version de novembre 2013) visant à étudier les conditions de sol et de fondation des ouvrages.

Ce rapport d'étude présente donc :

- La vérification de la compatibilité du projet avec le site étudié
- Le prédimensionnement des fondations des panneaux photovoltaïques
- Le prédimensionnement des radiers des postes de transformation et de livraison
- Le prédimensionnement des voiries d'accès

La présente étude est une mission d'ingénierie géotechnique de type « prestations d'investigations géotechniques » G2 phase AVP au sens de la classification des missions types d'ingénierie géotechnique (cf. norme française NF P 94-500 de novembre 2013).

Ce rapport est indissociable de ses Annexes.

2. Données générales

2.1. Documents consultés pour l'étude

2.1.1. Textes et documentation

Cette étude géotechnique a été réalisée en se basant sur les documents normatifs ou règlementaires suivants :

- Norme NF P 94-500, novembre 2013, Missions d'ingénierie géotechnique Classification et spécifications,
- Norme NF EN 1997-1 (Eurocode 7), Calcul Géotechnique Partie 1 : Règles générales ;
- Norme NF P 94-261 (normes d'application de l'Eurocode 7) pour le dimensionnement des fondations superficielles;
- Norme NF P 94-262 (normes d'application de l'Eurocode 7) pour le dimensionnement des fondations profondes;
- Réalisation des remblais et des couches de forme (GTR92), Fascicules I et II
- Norme NF P98-086, Dimensionnement structurel des chaussées routières, Application aux chaussées neuves, AFNOR, Mai 2019

Liste non exhaustive des documents techniques de références :

- Carte géologique de la France à 1/50 000, planche n°436 de Noyers et sa notice explicative, éditions BRGM;
- Guide technique du SETRA LCPC, Réalisation des remblais et couches de forme (GTR92),
 Fascicules I et II, Principes Généraux ;
- R. Frank, Calcul des fondations superficielles et profondes, Edition des Presses ENPC, janvier 2003;
- G. Philipponnat et B. Hubert, Fondations et ouvrages en terre, édition Eyrolles, octobre 1997;
- G. Filliat, La pratique des sols et fondations, éditions du Moniteur, 1981;
- F. Schlosser, Eléments de mécanique des sols, Edition des Presses ENPC, octobre 1988;
- Sites internet :
 - La banque de données du Sous-sol du BRGM (http://infoterre.brgm.fr);
 - Le site internet Géoportail et cartes topographiques de l'IGN (http://geoportail.gouv.fr);
 - Le portail national sur les risques naturels (https://georisques.gouv.fr;
 - o Documents et données d'Antea Group.

2.1.2. Documents et données transmis par le client

Pour cette étude, les informations et documents suivants nous ont été fournis par Luxel :

Référence	Date	Nom du document	
		Plan d'implantation du site (Google Earth)	
	16/04/2020	Plan topographique du site, par GE (Géomètre-Expert)	
-	04/12/2020	Plan de masse du projet	
		Notice descriptive du terrain et présentation du projet	

2.2. Localisation du projet

Le projet se situe sur la commune de Guillon-Terre-Plaine dans le département de l'Yonne (89)

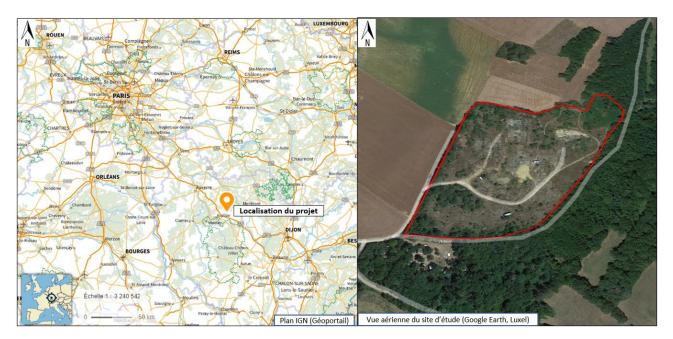


Figure 1 : Localisation géographique du projet

La topographie moyenne du terrain actuel du site oscille entre 285 et 292 m NGF. Il s'agit d'une ancienne carrière d'exploitation de calcaire à ciel ouvert.

3. Contexte du projet

3.1. Contexte géologique

D'après la carte géologique au 1/50000ème du BRGM disponible sur le site infoterre, les formations géologiques susceptibles d'être rencontrées au droit du site est les suivantes :

- J1- Calcaires à entroques ;
- J2b-a Marno-calcaires à Pholadomies ;
- I5 Marnes, Schistes caton, calcaires de Vassy;

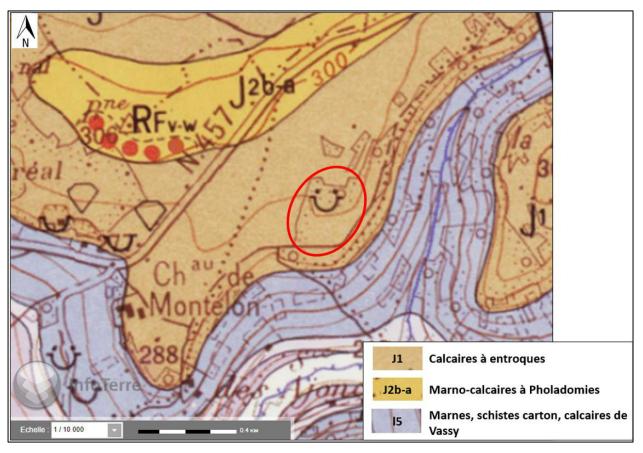


Figure 2 : Extrait de la carte géologique au 1/50 000 (infoterre.brgm.fr)

3.2. Hydrogéologie

Le site est concerné par la nappe alluviale dont la cote se situe vers 220 m NGF. On note la présence de sources d'eau à proximité dont la plus proche est le Ru de la grille, cours d'eau circulant à environ 250 m au Sud-Est du site d'étude. La topographie moyenne du terrain du site oscillant entre 285 et 292 m NGF. La nappe alluviale n'intéressera pas les fondations du parc photovoltaïques.

3.3. Aléas géotechniques

3.3.1. Aléa retrait gonflement des argiles

D'après les données du BRGM issues du site <u>www.infoterre.brgm.fr</u>, la zone d'étude est localisée en zone d'aléa faible vis-à-vis du phénomène de retrait gonflement des argiles. Ce niveau d'aléa est cohérent dans un contexte où le calcaire est affleurant.

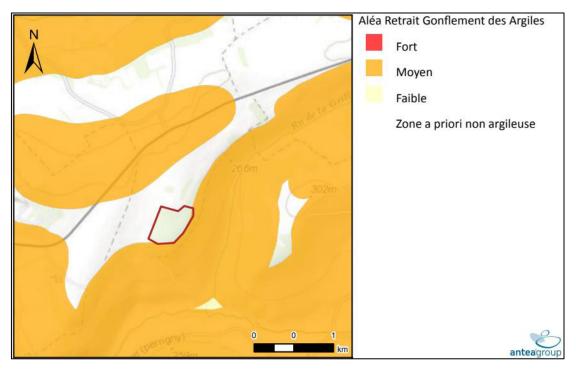


Figure 3 : Extrait de la carte aléa retrait/gonflement des argiles (source : Infoterre.brgm.fr)

3.3.2. Aléa remontée de nappe

D'après les données du BRGM issues du site <u>www.georisques.gouv.fr</u>, le site d'étude n'est pas concerné par de remontée de nappes.

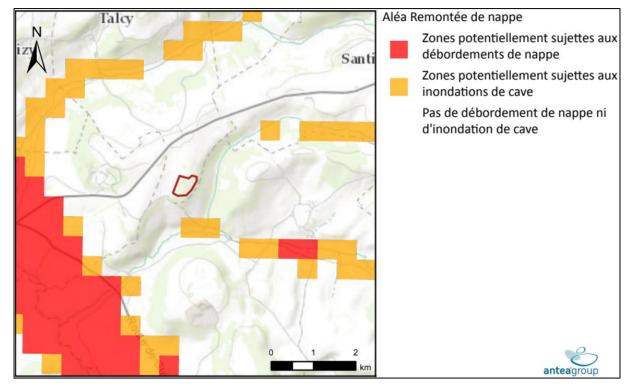


Figure 4: Aléa remontée de nappe (Source : géorisques.gouv.fr)

3.3.3. Aléa cavités et mouvement de terrain

Aucune cavité ou mouvement de terrain n'est répertorié au droit du site sur la base des données disponibles sur le site du BRGM, mais on note des cavités souterraines à proximité du site dont les plus proche sont d'origine naturelle (au nombre de deux) situées à environ 700 m du site. Ces cavités sont situées en bordure de la Montagne de Verre.

L'inspection visuelle de la carrière n'a pas mis en évidence d'indice karstique ou autre.

L'aléa souterrain est considéré comme faible dans ce contexte. Ramené à la surface du projet, l'enjeu cavité est faible, le risque (Aléa x Enjeu) sera donc limité en toutes circonstances.

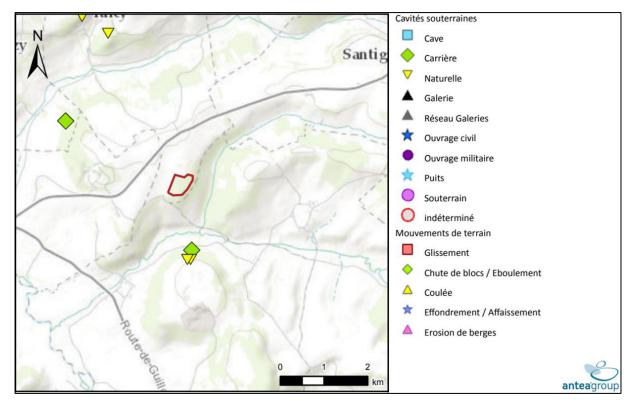


Figure 5 : Extrait de la carte des cavités (source : Infoterre.brgm.fr)

3.3.4. Aléa sismique

Concernant le risque sismique, le site est classé en **zone de sismicité 1 dite « très faible »** selon le zonage sismique de la France, défini par le décret n°2010-1255 du 22 octobre 2010.

Pour les ouvrages dits « à risque normal », aucune disposition particulière n'est donc à prendre en considération vis-à-vis de la conception parasismique des ouvrages.

Pour ce niveau d'aléa, le risque de liquéfaction des sols n'est pas à vérifier d'après l'Eurocode 7.

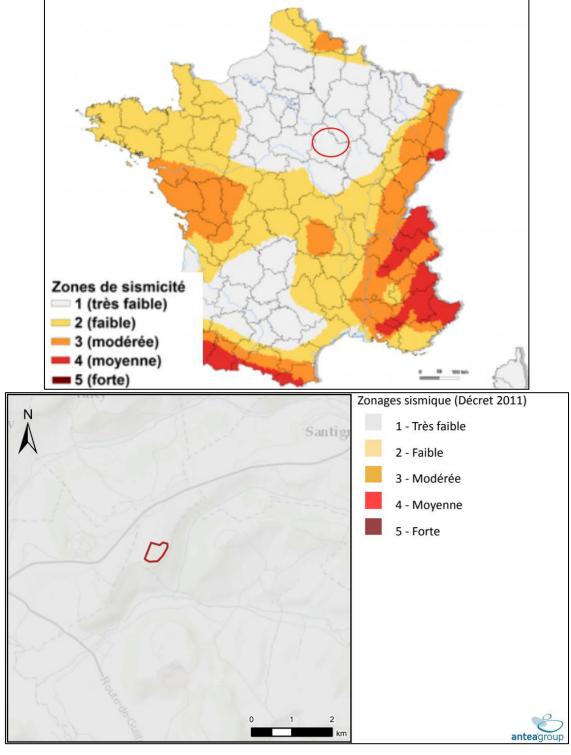


Figure 6 : Extrait de la carte zonage sismique (Source : Infoterre.brgm.fr)

3.3.5. Profondeur hors gel

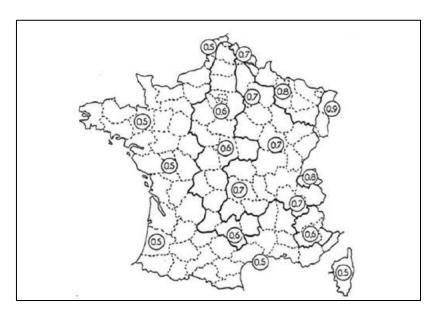


Figure 7: Carte de profondeur de mise hors gel (figure O.4.4.2 de la norme NF P 94 - 261)

Notre site d'étude se situe dans le département de l'Yonne (89), la profondeur de mise hors gel à respecter est de **0,7 m.**

4. Contexte historique et état actuel du site

4.1. Contexte historique du site

Afin de connaître l'historique du site et de repérer et dater d'éventuels signes d'exploitation, nous avons procédé à une étude historique du site étudié au moyen des photographies aériennes anciennes présentes sur le site remontées le temps de Géoportail.

En année 1953-1963, on note la présence de végétations sur l'ensemble du site

Figure 8 : Photographies aériennes disponibles sur le site géoportail - 1953 et 1963

En année 1967, les photographies aériennes disponibles montre une activité sur le site d'étude dont la clarté des photos ne permet pas de connaître exactement la nature, mais a priori le site semble être exploité comme carrière à ciel ouvert (aucune donnée entre les années 1963 et 1967).

Figure 9 : photographies aériennes disponibles sur le site géoportail 1967 et 1970

Entre les années 1978-1983, une grande partie du site semble être couverte de végétation, les photographies aériennes n'étant pas en couleur, il est un peu difficile d'affirmer s'il s'agit d'arrêt d'exploitation du site en carrière d'extraction de calcaire.

En année 1994, la photographie aérienne montre une absence d'activité sur le site avec une partie du site recouverte de végétations (aucune photographie disponible entre 1983 et 1994). L'année d'arrêt d'exploitation du site en carrière se situerait entre 1978 et 1994.

Figure 10 : photographies aériennes disponibles sur le site géoportail 1978 et 1983

Figure 11 : photographies aériennes disponibles sur le site géoportail 1993 et 1994

4.2. État actuel du site d'étude

Les éléments suivants ont été observés au cours d'une visite réalisée par un géotechnicien d'Antea Group, pour l'implantation des sondages géotechniques, en date de jeudi 05 mai 2022 par un temps ensoleillé.

Accès au site d'étude

Le site est accessible depuis une entrée principale et on note un rideau de végétations entourant le site.

Figure 12 : Accès au site d'étude

État actuel du site

Le site présente des zones boisées où les végétations sont pauvres à peu envahissantes vers les limites de clôture. On note des zones accidentées à certains niveaux du site.

Figure 13 : Photographie de zones boisées sur le site – Antea Group, 05/05/2022

5. Reconnaissances géotechniques

5.1. Programme des investigations in situ

Dans le cadre du projet de ce futur parc photovoltaïque, une campagne d'investigations géotechniques a été menée dans la période du 02 au 05 mai 2022 (sondages pressiométriques) et la période du 10/11 mai 2022 (sondages pénétrométriques).

Le programme des essais in-situ est le suivant :

- 3 forages destructifs descendus à 5 m de profondeur, avec réalisation d'essais pressiométriques aux profondeurs de 0,5; 1,5; 2,5; 3,5; 4,5 m (soit au total 5 essais par forage);
- 7 sondages pénétrométriques menés à 5 m de profondeur ou au refus

Le plan d'implantation des sondages est le suivant :

Figure 14 : Plan d'implantation des investigations géotechniques in-situ (Pressiomètres en rouge et Pénétromètres en jaune, Fouilles en noir)

<u>Remarque</u>: Les profondeurs qui suivent sont exprimées en mètres par rapport au terrain actuel (m/TA), rencontrées au moment des reconnaissance en mai 2022.

Remarque: Les sondages sont des reconnaissances ponctuelles et ne peuvent offrir une vision continue de l'état des terrains. Leur implantation et leur densité, guidées par la connaissance que nous avons du site, permettent d'avoir une vision représentative de l'état du sous-sol, sans que l'on puisse exclure, entre deux sondages, l'existence d'une anomalie d'extension limitée qui aurait échappé aux mailles de nos investigations.

5.2. Analyses en laboratoire

Les analyses et essais en laboratoire de mécanique des sols prévues dans le cadre de ce projet :

- 2 séries d'identification GTR soit :
 - 2 mesures de la teneur en eau (NF P 94-049-1),
 - 2 valeurs au bleu de méthylène (NF P 94-068),
 - 2 analyses granulométriques par voie sèche (<20 mm selon NF P 94-056),
- 2 essais de détermination de l'Indice Portant Immédiat IPI (NF P 94-078) ;
- 2 mesures des agressivités des sols vis-à-vis des bétons (EN 206-1);
- 2 mesures de corrosion des aciers par les sols (DIN 50929).

Au regard du contexte géologique (calcaire affleurant ou présent à faible profondeur par rapport au TN), un seul prélèvement a été effectué et a permis de réaliser les analyses et essais en laboratoire de mécanique des sols suivants :

- 1 série d'identification GTR;
- 1 essai de détermination de l'Indice Portant Immédiat IPI (NF P 94-078) ;
- 2 mesures des agressivités des sols vis-à-vis des bétons (EN 206-1);
- 2 mesures de corrosion des aciers par les sols (DIN 50929).

6. Résultats des reconnaissances

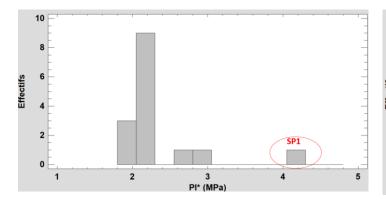
6.1. Lithologie et caractéristiques mécaniques des formations

La campagne de reconnaissance a mis en évidence les formations suivantes :

6.1.1. Sable limoneux à blocs calcaires et cailloux

Cette formation est composée de sable limoneux à blocs calcaires, pierres et cailloux, observée sur une profondeur variant entre 0 à 0,5 m/TA, sur la base des données des sondages géotechniques réalisées. L'horizon est de couleur marron clair et on note la présence de débris de végétations.

Aucun essai pressiométrique n'a été réalisé dans cette formation.


La résistance des terrains dans cette formation est bonne sur l'ensemble des sondages pénétrométriques, avec des valeurs de qd variant entre 5 MPa à plus de 60 MPa.

6.1.2. Substratum Calcaire

Cette formation est reconnue sur tous les sondages pour la réalisation des essais pressiométriques.

Cette formation a été observée sous la couche superficielle et souvent affleurant à la surface des terrains actuels. Elle a été rencontrée jusqu'à profondeur de 5 m/TA (fin des sondages).

Quinze (15) essais pressiométriques ont été réalisés dans cette formation. Les histogrammes suivants montrent la répartition des résultats obtenus :

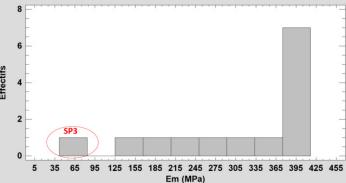


Figure 15: Histogramme de répartition des valeurs de pression limite et module pressiométrique – Calcaire

La synthèse des résultats des essais pressiométrique sont présentés ci-après.

Tableau 1 : Synthèse des résultats des essais pressiométrique – Calcaire

	PI* (MPa)			Em (MPa)		
Nb essais	Min	Max	Moy*	Min	Max	Moy*
15	2,0	4,2	2,3	37	400**	292

^{*} moyenne arithmétique

^{**}valeur max écrêtée à 400 MPa

Les valeurs mesurées sont très bonnes dans l'ensemble. Les valeurs caractéristiques retenues pour ces terrains sont de :

Module pressiométrique : Em = 200 MPa

Pression limite : PI* = 2,0 MPa

La résistance des terrains dans cette formation est très bonne, avec des refus enregistrés sur l'ensemble des sondages pénétrométriques, à des profondeurs situées vers 0,4 à 0,6 m/TA. Cet horizon est donc très dur.

Les valeurs pénétrométriques qd se situent à plus de 100 MPa.

6.2. Niveaux d'eau

Aucune venue d'eau n'a été observée, sur la profondeur de 5 m/TA, lors de la réalisation des sondages géotechniques (fouilles à la pelle mécanique + sondages pressiométriques).

6.3. Résultats des analyses en laboratoire

6.3.1. Essais d'identification et de détermination de l'Indice Portant Immédiat (IPI)

Au total 1 série d'identification GTR et un essai de l'IPI ont été réalisés sur des matériaux prélevés au droit de la fouille F8. Les résultats des essais en laboratoire sont cosignés dans le tableau suivant :

S 102 Code S 114 S 204 Essai au bleu de méthylène NF P94-068 eneur en eau pondérale Analyse granulométrique eneur en eau pondérale ndice Portant Immédia Classification GTR NF P94-050 NF P94-050 NF P94-056 moulage <80µm W_n <50mm <2mm VBS **GTR** D_{max} Référence de l'échantillon / description visuell (%) (%) (%) (%) (mm) (%)F8 de 0.00 à 0.20 m Grave sablo-silteuse carbonatée lâche, marron. 6.2 54 94.0 31.1 15.6 0.3 6.2 15.8 $C_1 B_5 m$ Présence d'éléments racinaires.

Tableau 2 : résultats des essais d'identification GTR et de l'IPI

D'après le Guide des Terrassements Routiers, les sols testés au droit du site correspondent à des sols de type C1B5m (Argiles à silex, argiles à meulière, éboulis, moraines, Alluvions grossières, ...). m représente l'état hydrique du sol, qui est moyen dans notre cas.

La roche, qui a été exploitée et dont les forages enregistrement de très bonnes caractéristiques mécaniques, est classé R₂, au sens du GTR.

6.3.2. Agressivité des sols sur les aciers

Deux (2) prélèvements de sol ont été effectués au droit de l'ensemble de la zone d'études, sur des matériaux jugés représentatifs du site, afin de caractériser la corrosivité des sols vis-à-vis des aciers. Les résultats bruts accompagnés des PV interprétés sont disponibles en Annexes.

Les échantillons analysés ont été prélevés dans l'horizon de sable limoneux.

Les mesures chimiques sur ces prélèvements, en vue de leur caractérisation de pouvoir corrosif sur les aciers, ont été faites conformément à la méthodologie AFNOR A05-252, de juillet 1990, qui définit la corrosion par les sols des aciers galvanisés ou non mis en contact des sols.

Ces éléments seront utilisés par un bureau d'études structures, afin d'aider au choix de l'épaisseur sacrifiée d'acier en fonction du contexte agressif des sols mis en évidence.

Interprétation selon la norme DIN 50929-3 :

La norme DIN 50929-3 fait référence à une interprétation selon 10 paramètres.

Pour l'ensemble de ces paramètres une note est attribuée. Ces notes sont sommées afin d'évaluer le critère B₀.

La valeur du B₀ permet d'approcher la corrosivité des aciers par les sols :

Tableau 3 : Valeurs seuils de corrosivité selon DIN 50929-3

Points	Corrosivité
< 0	Non agressif
-1 à -4	Peu agressif
-5 à -10	Agressif
< -10	Très agressif

Tableau 4: Evaluation du niveau de corrosivité selon DIN 50 929-3

Z	Caractéristique et valeur mesurée	Exigence ou critère	Essai	Unité	Plage de valeurs mesurées	Évaluation
	Échantillons de sol	333		C- 10		
					<10	4
		5825 30W B 25			10 à 30	2
Z_1	Nature du sol - Valence	Proportion de composants qui peuvent être retirés	Procédure DVGW GW 9: 2011-09,	2	30 à 50	0
*		qui peuvent etre retires	annexe B, module 5	Fractions massiques en %	50 à 80	-2
					> 80	-4
	— Impuretés	DIN EN 12501-2: 2003-08, tableau 1				-12
					> 500	4
		1227 E FEED IN			200 à 500	2
7	Résistance électrique	Résistance plus faible après addition d'eau, mesurée dans	Procédure DVGW GW 9: 2011-09,	Ω.m	50 à 200	0
Z_2	spécifique au sol	la cellule	annexe B, module 2	11. m	20 à 50	-2
				1	10 à 20	-4
				1	< 10	-6
		100			< 20	0
Z_3	Humidité du sol et référence pour Z6 à Z10	Teneur en eau après séchage à 105°C	Procédure DVGW GW 9: 2011-09, annexe B, module 1	Fractions massiques en %	> 20	-1
					>9	+2ª
Z_4	Valeur pH		Procédure DVGW GW 9: 2011-09,	,	6à9	0
		Valeur pH à 50 % d'eau Procédure DVGW GW 9: 2011-09, annexe B, module 2			4à6	-1
- 4	50 (50 to 10			< 4	-3	
	Capacité tampon - alcalinité K ₅ 4.3 Capacité acide jusqu'à pH 4.3 Procédure DVGW GW 9: 2011-09, annexe B, module 4 mmol/kg				> 1 000	3
Z_5		mmol/kg	200 à 1 000	1		
25		capacite acide jusqu a pri 4.3	annexe B, module 4		< 200	0
	1				<2,5	0
					2,5 à 5	-2
	Capacité tampon - acidité K _E	Consult de base (consultant)	P	mmol/kg	5 à 10	-4
Z_6	7,0	Capacité de base jusqu'à pH 7,0	Procédure DVGW GW 9: 2011-09, annexe B, module 5		10 à 20	-6
	***				20 à 30	-8
					> 30	-10
					< 5	0
Z.7	Bactéries sulfato-réductrices	Teneur sulfures	Procédure DVGW GW 9: 2011-09,	mg/kg	5 à 10	-3
12.6			annexe B, module 6		> 10	-6
					<2	0
1227			Procédure DVGW GW 9: 2011-09,	mmol/kg	2 à 5	-1
z_8	Teneur en sulfates	Teneur en sulfates	annexe B, module 4		>5à10	-2
			5600		> 10	-3
					< 3	0
					3 à 10	-1
Zo	Sels neutres	Teneur en chlorure et sulfate dans l'extrait aqueux	Procédure DVGW GW 9: 2011-09, annexe B, module 3	mmol/kg	10 à 30	-2
		uma i canan aquena	universe b, module 5		10 à 100	-3
		6			> 100	-4
	Conditions locales					
	Frank som out de Valei - d		visuel	1	Jamais	0
Z 10	Emplacement de l'objet dans la nappe phréatique	Eau souterraine présente			toujours	-1
	7, 7				temporaire	-2

Le tableau de synthèse présenté ci-après liste les résultats interprétés :

Echantillon	F7	F8
Valeur de B0	3	3

L'analyse de la corrosivité des sols sur la zone d'études, selon l'interprétation de la DIN 50929-3, traduit un environnement global **non agressif** au regard des critères analysés.

Les aciers des pieux du projet seront protégés (épaisseur sacrificielle, revêtement protecteur, etc.) afin de satisfaire à ces conditions de corrosivité des sols. Ces éléments seront dimensionnés par un bureau d'études structures.

6.3.3. Agressivité des sols vis -à-vis des bétons

Deux (2) prélèvements de sol ont été effectués afin de caractériser l'agressivité des sols vis-à-vis des bétons. Les résultats sont disponibles en Annexes.

Les mesures chimiques sur ces prélèvements, en vue de leur caractérisation d'agressivité sur le béton de fondation, ont été faites conformément à la norme française homologuée NF EN 206-1 d'avril 2004 et de son annexe NA.F, ainsi qu'au document normatif P18-011 de juin 1982, à statut de fascicule de documentation qui :

- Définissent des environnements agressifs les plus courants,
- Donnent diverses recommandations et les mesures préventives vis-à-vis de la durabilité des bétons.

Le document normatif P18-011 est utilisé pour aider au choix des ciments et des additions dans le cas d'environnements chimiquement agressifs, c'est-à-dire aux classes d'exposition « XA » au sens de la norme NF EN 206-1.

Tableau 5: Valeurs seuils pour les classes d'exposition selon la norme NF EN 206-1

	XA1	XA2	XA3	
Sol				
SO ₄ ²⁻ (mg/kg)	≥ 2000 et ≤ 3000	> 3000 et ≤ 12000 > 12000 et ≤ 2		
Degré d'acidité	≥ 200	Non rencontré en pratique		

Les résultats des analyses sont présentés dans le tableau ci-après :

Tableau 6 : Résultats de l'analyse chimique des sols pour analyse de l'agressivité (NF EN 206 – 1)

	F7	F8
Degré d'acidité (ml/kg)	18	22
SO ₄ ²⁻ (mg/kg)	820	1100
Classe d'agressivité selon NF EN 206	<xa1< td=""><td><xa1< td=""></xa1<></td></xa1<>	<xa1< td=""></xa1<>

Les concentrations en agents agressifs mesurées sur les échantillons de sol, traduisent un environnement de classe de faible agressivité (classe <XA1) au regard des sulfates et du degré d'acidité. Le béton de fondations devra être formulé pour satisfaire à ces conditions d'agressivité chimique des sols.

6.4. Modèle géotechnique de synthèse

Formation	GTR	Prof. Toit (m/TN)	Prof base (m/TN)	PI* (MPa)	Em (MPa)	α	γ _h (KN/m³)
Sable limoneux à blocs et calcaire	C ₁ B ₅ et R ₂	0	< 0,5	-	-	1/3	19
Calcaire	R ₂	< 0,5	>5 m	2,0	200	1/2	20

^{*}Nota : Les épaisseurs moyennes des couches sont données à titre indicatif, des variations locales sont susceptibles d'être observées.

Pour une appréciation plus fine des épaisseurs de couches et des variations lithologiques, se reporter au PV de sondages consignés en annexes.

7. Description du projet

Le projet consiste en la création d'une centrale photovoltaïque sur des structures fixes sur une superficie clôturée d'environ 4,79 hectares dont la surface couverte par les modules est d'environ 1,7 ha, d'une puissance totale d'environ 3,50 MW. La centrale sera aussi composée d'un poste de livraison et un poste de transformation.

Figure 16 : schéma type d'une installation photovoltaïque raccordée au réseau

7.1. Ouvrages et implantations

A ce stade de l'étude, le site comportera :

- Au total 9 000 modules pour une surface totale clôturée d'environ 4 800 m²;
- 1 poste de livraison ;
- 1 poste de transformation.

La figure suivante correspond au plan de masse du projet :

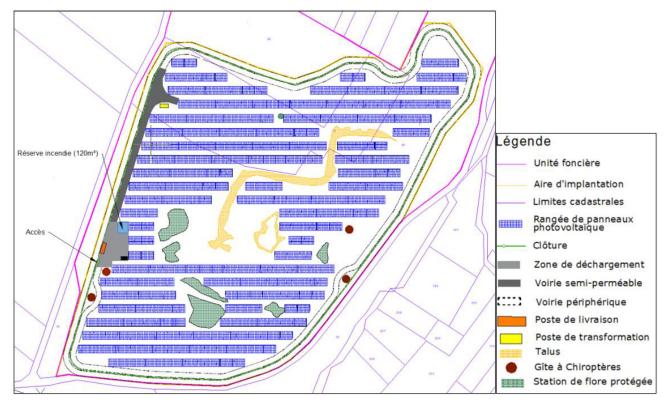


Figure 17 : Plan de masse du projet

7.2. Tables photovoltaïques

Les tables photovoltaïques seront constituées par un assemblage de panneaux photovoltaïques fixés sur des châssis métalliques reposant sur le sol en place par l'intermédiaire de fondations adaptées aux contraintes du site.

Les dimensions des châssis ne sont pas définies de façon définitive, au stade actuel de l'avancée du projet.

Les descentes de charge générées par ces structures seront limitées, de l'ordre de 30 kg/m², soit pour une structure de 32,6 m² (10,2 m x 3,2 m), une charge totale de 979 kg, répartie sur 6 pieds.

En première approximation, nous avons donc retenu, à titre de pré dimensionnement, des charges ponctuelles verticales de l'ordre de 165 à 200 kg, soit 16,5 à 20 kN par appui.

A ce stade actuel du projet, au regard de la synthèse des données géotechniques (présence de calcaire dur affleurant) et par retour d'expériences sur des projets similaires, des **fondations type micropieux forés sont attendues pour ce projet.**

.

7.3. Poste de livraison et de transformation

Le projet prévoit la construction d'un poste de livraison et d'un poste de transformation.

A ce stade des études les descentes de charges ne nous ont pas été transmise, d'après notre retour d'expérience, les descentes de charge générées par ce type de structures seront limitées. En première approximation, nous avons retenu, à titre de pré dimensionnement, une contrainte répartie de l'ordre de 15 kN/m².

D'après les plans de coupes à notre disposition, les dimensions des postes de livraison et de transformation sont les suivantes :

Poste de transformation

Longueur: 6,2 mLargeur: 2,8 mHauteur: 2,5 m

Poste de livraison

Longueur: 8,2 mLargeur: 2,8 mHauteur: 2,5 m

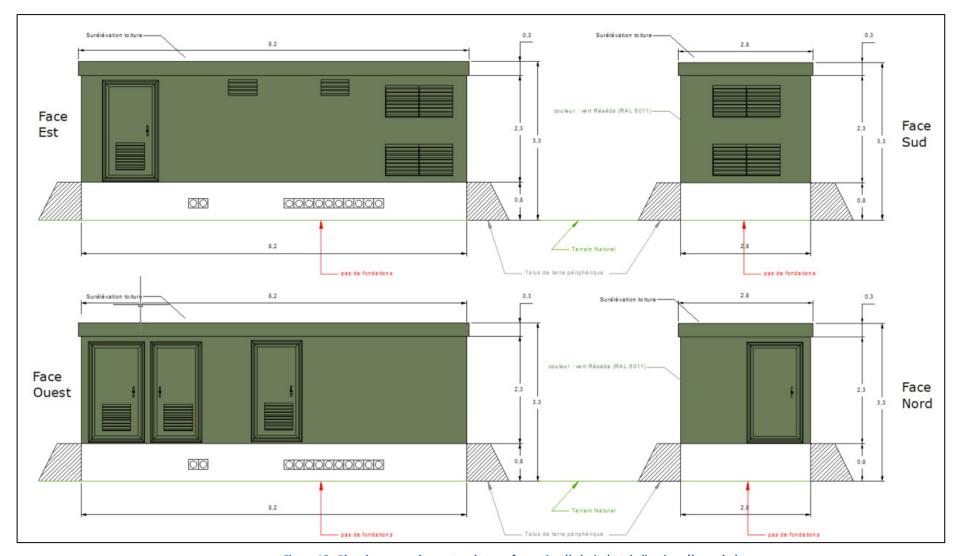


Figure 18 : Plan de coupes des postes de transformation (à droite) et de livraison (à gauche)

8. Etude des fondations des tables photovoltaïques

Nous rappelons que la présente mission G2-AVP propose un prédimensionnement général des fondations des structures porteuses des ombrières photovoltaïques. Cette étude se limitera donc à une ébauche dimensionnelle du système de fondations.

Le dimensionnement final des fondations du projet, adaptés aux contraintes définitives, devront faire l'objet d'une vérification de stabilité aux différents cas de charge, dans le cadre d'une étude de conception géotechnique en phase Projet – Mission G2-PRO au sens de la Norme NF P 94-500, une fois le modèle de fondation arrêté par le porteur de projet.

8.1. Descentes de charges

A ce stade d'avancement du projet, aucune descente de charge, associée aux cas de charge d'étude (ELU_{fond}, ELU_{acc}, ELS_{car}, ELS_{qp}) ne nous a été transmise.

Ne disposant pas des descentes de charge du projet, ni des caractéristiques des supports des modules photovoltaïques, seuls les efforts admissibles des sols, en fonction des fondations proposées, seront fournis dans ce rapport.

<u>Nota</u>: aucune contrainte de tassement absolu ou différentiel ne nous a été communiqué, au stade des études actuelles. Ces éléments devront être confirmés par un bureau d'études structures, en fonction des contraintes effectives du projet, et vérifiés dans le cadre d'une mission d'étude de conception géotechnique en phase Pro, mission G2-PRO au sens de la Norme NF P 94-500.

8.2. Principe des fondations

Un mode de fondations sera étudié dans le cadre de cette étude :

Fondation semi-profonde type micropieux forés

Le dimensionnement final des fondations, adaptés aux contraintes de projet, devront faire l'objet d'une vérification de stabilité aux différents cas de charge, dans le cadre d'une étude de conception géotechnique en phase Projet – Mission G2-PRO au sens de la Norme NF P 94-500, une fois le modèle de fondation arrêté par le porteur de projet.

8.3. Etude des fondations semi profondes

Les calculs ont été réalisés conformément aux prescriptions de l'EUROCODE 7 (EC7) et de sa norme d'application nationale NF P94-262 –

Justification des ouvrages géotechniques – Fondations profondes. Les calculs sont menés selon la méthode pressiométrique qui est détaillé en Annexe F de la norme NFP 94-262.

Les pieux seront dimensionnés selon l'approche de calcul 2, aux ELU et ELS conformément au tableau 8.1 de la norme NFP 94-262.

La méthode de calcul « Modèle de terrain » sera appliqué pour la détermination de la résistance limite de compression (ou portance limite) des pieux NFP 94-262 - § 8.5.2 (5 et 6) — note 3), selon la méthode pressiométrique (NFP 94-262 - Annexe F).

Conformément à cette Norme d'application nationale, il doit être réalisé, pour la combinaison d'action fondamentale et la situation de projet la plus défavorable vis-à-vis de l'état limite ultime (ELU) et de l'état limite de service (ELS), les vérifications suivantes :

- Portance des terrains ;
- Résistance de traction ;
- Résistance structurale (non réalisé en G2-AVP);
- Déplacement en tête de pieux (dans le cas de fondations profondes sous charge transversale) (non réalisé en G2-AVP).

8.3.1. Eléments de calcul

L'effort limite mobilisable sous la pointe QPU est négligé pour les micropieux.

La charge limite Qu est alors égale à l'effort limite mobilisable par frottement latéral :

$$Qu = Qsu$$

L'effort limite mobilisable par frottement latéral sur la hauteur concernée du fût d'un élément de fondation est donné par l'expression :

$$Qsu = \rho s * P * \int qs(z). dz$$

Avec:

ρs est un coefficient réducteur

P désigne le périmètre de l'élément de fondation ;

qs(z) le frottement latéral limite unitaire à la cote z.

Le frottement obtenu est ensuite divisé par les coefficients Yrd1 et Yrd2, spécifiques aux conditions de calcul (compression, traction, type de fondation ...)

8.3.2. Hypothèse de calcul

Le prédimensionnement est réalisé selon la méthode pressiométrique.

Le tableau suivant présente les hypothèses de calcul (frottement latéral qs, facteur de portance kp) prises en compte pour chaque horizon selon le mode de réalisation des pieux suivants (éléments tirés de l'Annexe A de la Norme NF P 94-262) :

- Classe de pieux n°1
- Catégorie de pieux n°18

Tableau 7: Hypothèses de calcul retenues dans Foxta pour les caractéristiques de sol

Formation	Prof. toit (m/TN)	Prof. base (m/TN)	PI* (MPa)	qs (kPa)	kp
Zone neutralisée	0,0	0,5	Neutralisé		
Calcaire	0,5	> 5	2,0	170	1,45

⁽¹⁾ Les frottements n'ont pas été pris en compte sur une épaisseur de 50/60 cm/TN pour prendre en compte le phénomène de gel/dégel, le retrait-gonflement et les sollicitations de chantier dans les terrains les plus superficiels.

8.3.3. Pré-dimensionnement

Un pré-dimensionnement a été réalisé grâce au module FONDPROF du logiciel Foxta v4 développé par Terrasol.

Le prédimensionnement a été effectué en considérant un micropieu de diamètre 190 mm.

Dans le cas d'un pieu foré (classe 1 – Catégorie 18), les pondérations combinées retenues seront les suivantes :

Tableau 8 : Pondération combinées des charges en traction et compression sur les pieux forés de Classe 1 – Cat.18

Cas de charge	Pondérations	ELS qp	ELS carac	ELU fond	ELU acc
Travail en traction	Pondérations combinées sur Qs	0,212	0,289	0,395	0,433
	Pondérations combinées sur Qp*	0,000	0,000	0,000	0,000
- 1	Pondérations combinées sur Qs	0,289	0,354	0,413	0,455
Travail en compression	Pondérations combinées sur Qp*	0,000	0,000	0,000	0,000

^{*}Effort mobilisable de pointe Qd négligé

Les calculs ont été menés sous le logiciel FoXta, développé par TERRASOL, pour différentes longueurs de pieux.

Les résultats du prédimensionnement des micropieux forés obtenus pour les différentes longueurs sont les suivants :

Tableau 9 : Résultats du prédimensionnement des micropieux forés

Longueur de pieux (m)	Mode de travail	Q _{ELS-QP} (kN)	Q _{ELS-CARA} (kN)	Q _{ELU-FOND} (kN)	Q _{ELU-ACC} (kN)
1,20	Traction	10,7	20,5	28,1	30,7
	Compression	20,5	25,1	29,3	32,3
1,50	Traction	15,2	29,3	40,1	43,9
	Compression	29,3	35,9	41,9	46,1
1,80	Traction	19,8	38,1	52,2	57,1
	Compression	38,1	46,7	54,5	60,0
2,00	Traction	22,8	44,0	60,2	65,9
	Compression	44,0	53,8	62,9	69,2

Dans tous les cas, il conviendra de dimensionner le nombre, la longueur et le diamètre des pieux forés scellés au béton dans le cadre d'une mission G2PRO au sens de la Norme NF P 94-500, une fois les descentes de charges définitives retenues au projet.

9. Etude des fondations des postes de livraison et de transformation

9.1. Descentes de charges

A ce stade d'avancement du projet, aucune descente de charge, ne nous a été transmise. En première approximation, nous avons retenu, à titre de pré dimensionnement, une contrainte répartie de l'ordre de 15 kN/m².

Pour rappel, les dimensions (L x l x H) des postes de livraison et de transformation retenues à ce stade sont de 8,2 m x 2,8 m x 2,5 m (poste de livraison) et 6,2 m x 2,8 m x 2,5 m (poste de transformation).

9.2. Ebauche dimensionnelle des fondations des postes de livraison et de transformation

9.2.1. Mode de fondation

Au vu des caractéristiques mécaniques des sols en place, la contrainte admissible (Cf. Tableau 13) dans la formation de calcaire (horizon affleurant ou situé à faible épaisseur/TA) est compatible avec la mise en œuvre de radiers pour la fondation de poste de livraison/transformation, dans le cas de charges suffisamment bien réparties.

Pour les radiers, l'influence du phénomène du gel/dégel n'est pas très important. Les radiers seront posés sur la formation de limon sableux, après décapage de la terre végétale. S'il s'avère que le calcaire est affleurant au niveau de l'emprise réservée aux postes de livraison et de transformation, les fondations vont se reposer sur la formation calcaire après purge des blocs altérés et terre végétale. Afin d'homogénéiser le sol d'assise et de limiter l'impact du radier sous les sollicitations du projet, un matelas en matériaux insensible à l'eau d'une épaisseur minimale de 0,3 m, sera réalisé sous l'ensemble des fondations, avec débord de 1m minimum. Un contrôle de EV2 à 50 MPa minimum devrait être effectué.

Afin d'assurer les fonctions requises, ces matériaux seront constitués d'un matériau granulaire non évolutif dans le temps et insensible à l'eau. Les matériaux seront des matériaux alluvionnaires ou de carrière, conformes aux normes XP P 18-540 et NF EN13242.

Le radier sera de dimensions 8,2 m x 2,8 m x 0,3 m (poste de livraison) et 6,2 m x 2,8 m x 0,3 m (poste de transformation)

Les calculs ont été réalisés conformément aux prescriptions de l'EUROCODE 7 (EC7) et de sa norme d'application nationale NF P94-261 — Justification des ouvrages géotechniques — Fondations superficielles.

Conformément à cette Norme d'application nationale, il doit être vérifié, pour la combinaison d'action fondamentale et la situation de projet la plus défavorable vis-à-vis de l'état limite ultime (ELU), la sécurité vis-à-vis des modes de rupture suivants :

 Rupture par poinçonnement du sol support : défaut de capacité portante et excès d'excentricité du chargement appliqué à la fondation ;

- Rupture par glissement;
- Rupture par renversement.

Il doit être vérifié, pour la combinaison d'action quasi-permanente et la situation de projet la plus défavorable vis-à vis de l'état limite de service (ELS), les critères suivants :

• Un critère de tassement acceptable vis-à-vis de la structure.

9.2.1.1. Vérification de la capacité portante

Aux ELU comme aux ELS, la condition de non-rupture par défaut de portance du terrain s'écrit :

$$V_d - R_0 \le R_{v,d}$$

où:

 V_d : valeur de calcul de la composante verticale de la charge transmise par la fondation au sol $(V_d = Y_G G_{max} aux ELU et V_d = G_{max} aux ELS)$,

R₀ : valeur du poids du volume du sol constitué du volume de la fondation sous le terrain après travaux, et des sols compris entre la fondation et le terrain après travaux

R_{v;d}: valeur de calcul de la résistance nette du terrain sous la fondation superficielle qui s'écrit:

$$\mathbf{R}_{\mathbf{v};\mathbf{d}} = \frac{A' \times q_{net}}{\gamma_{r,v} \times \gamma_{r,v,d}}$$

où:

A': surface effective de la fondation superficielle.

γ_{r,v}: facteur partiel de portance (cf. tableau ci-après),

 $\mathbf{y}_{r,v,d}$: coefficient de modèle associé à la méthode de calcul pressiométrique (cf. tableau ciaprès),

q_{net} : contrainte associée à la résistance nette du terrain sous la fondation superficielle calculée selon la méthode pressiométrique (*Annexe D de la norme NF P 94-261*), elle s'écrit :

$$q_{net} = k_p p_{le} * i_{\delta} i_{\beta}$$

où:

 i_{δ} : coefficient de réduction de portance lié à l'inclinaison du chargement (vaut 1 si la charge est verticale),

 i_{β} : coefficient de réduction de portance lié à la proximité d'un talus de pente β (vaut 1 si fondation suffisamment éloignée du talus),

p_{le}* pression limite nette équivalente, prise égale à P_l* dans le cas d'un sol homogène,

K_p: facteur de portance pressiométrique défini dans le *tableau D.2.3 de la norme NF P 94 261*.

Les coefficients correcteurs à prendre en compte sont présentés dans le tableau suivant :

Tableau 10 : Coefficient partiel à prendre en compte dans la vérification de la portance du sol aux ELU et ELS

Situation	Coefficient partiel pour le calcul de la portance - γ _{r,v}	Coefficient de méthode (Calcul pressiométrique) Yr,v,d
ELU transitoire et	1,4	
durable	(Tableau B.3.3 – Jeu R2 – NF P 261)	
ELU sismique	1,4	1.2
ELU accidentel	1,2	1,2
ELS Quasi-permanent	2.2	
ELS caractéristique	2,3	

9.2.1.2. Vérification de la stabilité au renversement

La surface d'assise effective A' de la fondation superficielle, pour le cas d'une semelle circulaire, s'exprime par la relation suivante (Norme NF P 94-261 – Annexe Q) :

$$A' = A \left(2 \frac{\arccos\left(\frac{e}{R}\right)}{\pi} - \frac{2e}{\pi R} \sqrt{1 - \left(\frac{e}{R}\right)^2} \right) = \pi R^2 \left(2 \frac{\arccos\left(\frac{e}{R}\right)}{\pi} - \frac{2e}{\pi R} \sqrt{1 - \left(\frac{e}{R}\right)^2} \right)$$

$$B' = \sqrt{A' \frac{(R-e)}{\sqrt{R^2 - e^2}}}$$

$$L' = \sqrt{A' \frac{\sqrt{R^2 - e^2}}{(R - e)}}$$

Où:

B': Largeur effective équivalente de la fondation circulaire (en m)

L': Longueur effective équivalente de la fondation circulaire (en m)

e : excentrement du chargement, calculé selon la formule suivante :

$$e = \frac{M}{N}$$

Où:

M : correspond au moment de rotation de la fondation, défini d'après l'expression suivante :

$$M = Fh \times H$$

Fh: correspond à la résultante des forces horizontales agissant sur la fondation,

H: bras de levier correspondant à la hauteur d'action de la composante horizontale,

N: effort normal sur la fondation, soit la somme du poids propre de la longrine auquel se soustrait les efforts de traction,

B: largeur de la fondation.

La stabilité au renversement est justifiée en assurant une compression au sol d'assise en sous-face de la fondation, sur au moins :

- 100% de la surface d'assise totale dans un cas de charge à l'ELS permanent
- 75% de la surface d'assise totale dans un cas de charge à l'ELS caractéristique
- 10% de la surface d'assise totale dans un cas de charge à l'ELU (fondamental, accidentel et sismique).

Ces seuils peuvent être traduits en critères d'excentricité maximale du chargement. Cela est résumé dans le tableau ci-dessous :

Tableau 11 : Inéquations devant être vérifiées pour la justification de la stabilité d'une fondation circulaire au renversement

Cas de chargement	Surface d'assise effective comprimée A' devant être vérifiée	Inéquation à vérifier pour stabilité au renversement d'une fondation circulaire de diamètre B	Références sur la Norme NF P 94-261
ELS qp	= 100%	(1-2e/B)≥ 3/4	Formule 13.3.2
ELS car	≥ 75%	(1-2e/B) ≥ 9/16	Formule 13.3.5
ELU	≥ 10%	(1-2e/B) ≥ 3/40	Formule 9.5.2

9.2.1.3. Glissement (ELU)

Aux ELU, la condition de stabilité au glissement de la fondation s'écrit (formule 10.1.1 de la Norme NF P 94-261) :

$$H_d \leq R_{h;d} + R_{p;d}$$

Où:

H_d: composante horizontale de la charge transmise par la fondation au terrain;

R_{h;d}: résistance au glissement de la fondation ;

 $\mathbf{R}_{\mathbf{p};\mathbf{d}}$: résistance frontale ou tangentielle de la fondation à l'effet de H_d .

9.2.1.4. Tassements de la fondation (ELS)

D'après l'Annexe L de la norme d'application nationale NF P94-261, il est admis, pour les structures courantes à fondations isolées, des tassements totaux atteignant 50 mm et des tassements différentiels de 20 mm entre colonnes adjacentes.

A l'ELS en combinaison quasi-permanente, les valeurs de tassements seront déterminées à partir de la méthode pressiométrique. Cette méthode permet d'estimer le tassement final d'une fondation superficielle à partir des valeurs de module E_m déduites des essais au pressiomètre Ménard.

Le tassement total S_f est la somme du tassement sphérique S_c dû aux déformations volumétriques et du tassement déviatorique S_d dû aux déformations de cisaillement. Les tassements sphérique S_c et déviatorique S_d sont calculés respectivement à partir des relations ci-après.

$$s_c = \frac{\alpha}{9E_M} (q' - \sigma'_{v0}) \lambda_C B$$

$$s_d = \frac{2}{9E_M} \left(q' - \sigma'_{v0} \right) B_0 \left(\lambda_d \frac{B}{B_0} \right)^{\alpha}$$

Où:

E_m: module pressiométrique Ménard ;

q' : contrainte moyenne effective appliquée au sol par la fondation ;

 σ'_{vo} : contrainte verticale effective au niveau de fondation, dans la configuration du terrain avant travaux;

B₀: largeur de référence égale à 0,60 m;

B: largeur de la fondation;

 α : coefficient rhéologique dépendant de la nature du sol ;

 λ_c et λ_d : coefficients de forme, fonction du rapport L/B.

Tableau H.2.1.1.3 – Coefficients de forme								
L/B	Cercle	Carré	2	3	5	≥20		
	1,00	1,10	1,20	1,30	1,40	1,50		
λ_{d}	1,00	1,12	1,53	1,78	2,14	2,65		

La vérification de la portance sous le radier, envisagé pour les postes de transformation, et les tassements estimatifs sous les descentes de charge supposées, ont été calculés à l'aide du logiciel Foxta V4 – Module TASPLAQ, développé par Terrasol.

9.2.2. Prédimensionnement de poste de livraison et de livraison

9.2.2.1. Résistance nette du terrain

Hypothèses de calcul pour la capacité portante

Tableau 12 : Hypothèses de calcul pour la capacité portante

Profondeur d'encastrement (m)	0,5*
Pression limite nette (PI*)	2,0 MPa
Facteur de portance pressiométrique (kp)	0,8
Coefficient de réduction de portance lié à la proximité d'un talus de pente (i _B)	1
Contrainte totale initiale à la base de la fondation (Ro)	1
Poids de la fondation (Po)	1

^{*} recherche du calcaire.

On en déduit les contraintes de calcul aux états-limites :

Tableau 13 : Contraintes admissibles du terrain et de calcul aux états limites des semelles superficielles isolées

q net	Rv;d	Rv;d
Contrainte admissible par	Contrainte admissible du	Contrainte admissible du
le terrain (kPa)**	terrain aux ELS* (kPa)	terrain aux ELU* (kPa)
1600	580	952

^{*}Dans le cas d'un effort vertical, centré sur la fondation, y compris poids de la fondation.

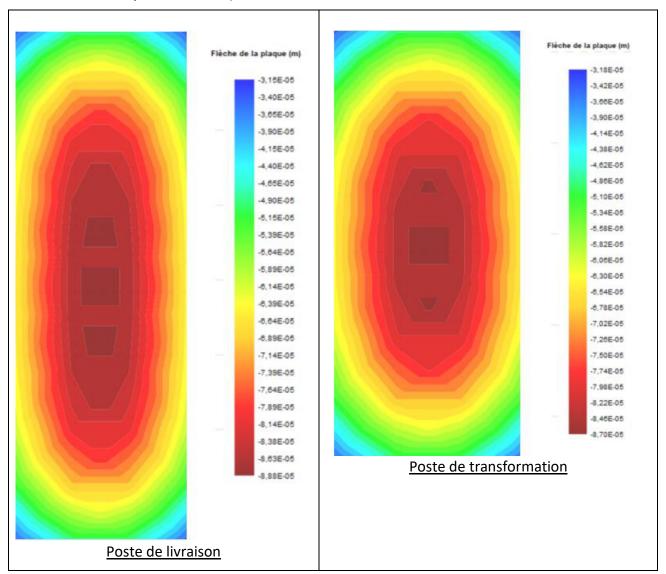
Cette contrainte admissible est suffisante compte tenu des charges réparties limitées qui seront générées à la base des radiers, estimées approximativement à 15 kPa.

9.2.2.2. Estimation des tassements

Les sols sont ici définis par leur module d'élasticité **Es**, calculé comme le rapport Em/α (définis dans le modèle géotechnique) et le coefficient de poisson Y, fixé à 0,3 pour les sols.

Le tableau suivant synthétise les données utilisées pour la modélisation :

Formation	Profondeur de la base de la formation (m)	Es (MPa)	Y (-)
Sable limoneux à blocs	0 à -0,5	-	
Calcaire	-5	400	0,3


Les caractéristiques du radier utilisées pour la modélisation sont :

Modélisation	Surface	Épaisseur (m)	Module d'Young (GPa)	Coefficient de Poisson
1 PDL/1PDT	8,2 x 2,8 m/ 6,2 x 2,8 m	0,3	20	0,2

^{**} Dans le cas où $i\delta = 1$ (à calculer après réception des descentes de charge)

La figure ci-après illustre les résultats obtenus après calcul via le module TASPLAQ du logiciel FOXTA, développé par TERRASOL, au niveau du radier du poste de livraison et transformation PDL/PDT (charge uniformément répartie de 15 kPa) :

Ces valeurs de tassements, **inférieures au millimètre**, devront être vérifiées et recalculées avec les descentes de charges définitives de l'ouvrage, en fonction des éléments dimensionnés en phase Projet (Etude de Conception géotechnique – Mission G2-PRO au sens de la Norme NF P 94-500).

Dans tous les cas, le radier devra être dimensionné par un bureau d'études structure, qui prendra en compte l'ensemble des éléments défini dans ce rapport, et des contraintes d'exploitation définies par le maitre d'ouvrage.

.

10. Prédimensionnement des voiries

10.1. Généralités

Dans la suite du rapport nous considérons que la terre végétale (lorsque présente) sera décapée. Nous considérons ainsi que les matériaux support seront des matériaux de classe C_1B_5 selon le GTR (Guide des Terrassements Routiers) dans un état hydrique moyen (1 échantillon) ou directement la roche

Les sols remaniés par des opérations quelconques ou les zones présentant une humidité ne parvenant pas à être maîtrisée, seront purgés.

Les fonds de forme devront être refermés dès l'arrivée de la pluie et la veille de week-end ou de périodes d'interruption. Une pente latérale de 2% orientée vers une bordure ou un fossé raccordé à un exutoire sera réalisée.

Le prédimensionnement des voiries est réalisé conformément au Guide des Terrassements Routiers (édition SETRA) et du Catalogue des structures types de chaussée neuves (édition SETRA), pour une plateforme PF2 (couche de forme à réceptionner avec un module de déformation réversible EV2 supérieur à > 50 MPa).

10.2. Plateforme supérieure des terrassements

Les conditions de terrassements ne sont pas connues mais des travaux de décapages faibles à nuls sont attendus en première approche. La PST sera donc constituée des calcaires ou d'une faible couche siltocaillouteuse dans un état hydrique moyen au moment des travaux.

Nous recommandons de réaliser les travaux de terrassement en saison sèche.

Dans la suite du rapport nous nous plaçons dans le cas d'une PST n°2 – AR1 dans les matériaux meubles. Dans les zones où le calcaire affleure, un cas de PST n°4 sera retenu

10.3. Réalisation de la plateforme (PF) et couche de forme

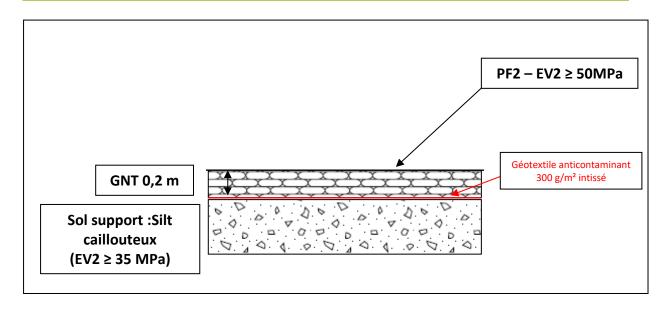
Au vu des données disponible à ce stade de l'étude, nous préconisons afin d'obtenir une PF2 la réalisation d'une couche de forme en graves non traitées (GNT) dont l'épaisseur est précisée dans le tableau ci-après. Un géotextile adapté devra être mis en place entre les matériaux support et la couche de forme.

Ainsi la préparation de la plateforme support, l'obtention d'une classe de plateforme PF2 est obtenue de la manière suivante

Conditions de PST minimales	Objectif classe de plateforme	Matériau de la couche de forme	Épaisseur de matériau de couche de forme	
PST n°2 – AR1 (EV2 ≥ 35 MPa)	PF2 (ou EV2 > 50 MPa)	GNT *	0,2 m + géotextile anticontaminant	
PST n°4 (EV2 ≥ 100 MPa)	PF2 (ou EV2 > 50 MPa)	GNT *	Simple nivellement	

Tableau 14: Exemple de couche de forme pour obtenir une PF2

- → Courbe granulométrique,
- → Teneur en eau,
- → Densité effective,
- → Optimum Proctor,
- → Valeur d'essai Los Angeles LA et Micro Deval en présence d'eau MDe, ou friabilité FS pour les sables.


10.4. Synthèse


Selon les éléments décrits ci-avant, les coupes types de voiries pour le parc photovoltaïque pourra être la suivante :

- GNT: Graves non traitées, matériaux d'apport,
- Sol support : Matériaux en place au droit du site : Silt caillouteux/ Calcaire

^{*} matériau d'apport pris à titre d'exemple. Pour les matériaux d'apport, une demande d'agrément sera réalisée pour vérifier que les conditions du GTR soient respectées. Les caractéristiques suivantes devront être fournies :

11. Sujétions d'exécution et recommandations constructives

11.1. Gestion des eaux de surface

11.1.1. En phase chantier

L'entreprise devra veiller à bien fermer les surfaces de travail avant l'arrivée de précipitations importantes afin de permettre le ruissellement et la collecte des eaux pluviales.

Les fossés de collecte et de gestion des eaux pluviales si existants seront maintenus et entretenus, afin de faciliter la collecte et l'évacuation des eaux. Ils devront être en état de fonctionnement tout comme leur exutoire et permettront d'éviter tout point d'accumulation des eaux météorologiques.

11.1.2. En phase définitive

Il est nécessaire de limiter et de maîtriser les écoulements des eaux de ruissellement sur le site dont les effets peuvent être néfastes à la construction.

Si des zones de flash et de stagnation potentielle d'eau, dues aux travaux de terrassements qui ont été réalisés ou lors des travaux d'aménagement du projet photovoltaïque, sont observées, elles devront être traitées. Les zones de stagnation devront être identifiées par une inspection visuelle et un repérage sur plan topographique à jour. Un léger remodelage avec apport de matériaux pourra être envisagé.

Malgré tout, le projet final ne devra pas impacter le ruissellement des eaux de surface et les ouvrages de collectes actuels. Des dispositions complémentaires seront mises en œuvre si nécessaire, dans le cas où les aménagements (alignement de longrines, pistes d'exploitation, etc.) feraient localement barrage aux écoulements de surface.

11.2. Terrassements sur le site et plateformes

Les travaux de terrassements au droit de la zone d'étude seront réalisés à l'aide d'engins classiques de terrassements de préférence en période sèche.

Les conditions de réemploi des matériaux (en remblai ou couche de forme) dépendront de leur état hydrique et des conditions météorologiques.

Les conditions d'utilisations des matériaux en couche de forme sont disponibles dans le Fascicule II du Guide Technique de Réalisation des Remblais et des couches de forme, du SETRA et LCPC.

Dans le cadre de travaux de terrassements, l'épaisseur de couche de remblaiement mise en œuvre ne devra pas dépasser les valeurs limites indiquées dans les recommandations GTR, compte tenu de la classe de sol et du type d'engin de compactage utilisé. Le taux de compactage devra être <u>supérieur ou égal à 95 % de l'O.P.N.</u>

11.3. Adaptation au sol

11.3.1. Fondations profondes

Un contrôle de la longueur de la fiche des pieux, et de l'adaptation vis-à-vis des aléas rencontrés sur site, pourra être réalisé dans le cadre d'une mission de supervision géotechnique de l'exécution (missions G3 ou G4 conformes à la Norme NF P 94-500).

Dans tous les cas, il est préconisé la réalisation, en phase de préparation d'Exécution, d'essais de chargement ou d'arrachement permettant la validation des hypothèses de sol (mission G3 au sens de la Norme NF P 94-500). Après exécution des pieux, des essais de contrôles permettront de valider le dimensionnement et l'exécution des travaux de fondation.

11.3.2. Fondations sur radier

Les radiers du projet (postes électriques) pourront être réalisés en prévoyant la purge de la terre végétale, de terrains remaniés ou de toute poche altérée. Le radier devra reposer sur un hérisson drainant (massif de substitution) d'épaisseur minimale de 0,30 m.

11.4. Préconisations après travaux

Afin d'assurer la pérennité des ouvrages géotechniques, il est recommandé de :

- Ne pas charger l'ouvrage au-delà des charges prévues à la conception ;
- Ne pas creuser autour des fondations ;
- Ne pas apporter des charges à proximité immédiate de l'ouvrage ;
- Suivre les recommandations données dans le chapitre spécifique du présent rapport;
- Eviter la plantation d'arbres à proximité de l'ouvrage ;
- Ne pas apporter de remblais sur un terrain en pente en amont ou en aval de la construction.

12. Enchainement des missions géotechniques

Nous rappelons que le présent rapport concerne l'étude d'ingénierie géotechnique d'avant-projet (mission G2 AVP au sens de la norme NF P 94-500, version de *novembre 2013*).

Conformément aux préconisations de cette norme, elle doit être suivie par l'étude d'ingénierie géotechnique de projet (mission G2 PRO), une fois connues les caractéristiques des fondations (descentes de charge et prédimensionnement des massifs de fondation ou radiers réalisé par le BET Structures).

Pour la phase de réalisation des travaux, une mission de supervision géotechnique (mission G4) devra être réalisée. Elle comportera, d'une part, la validation des documents géotechniques produits par l'entreprise, et d'autre part le suivi géotechnique du chantier, permettant de s'assurer que les terrains rencontrés présentent des caractéristiques géotechniques cohérentes avec les hypothèses faites dans le cadre des études, et le cas échéant définir en concertation avec l'entreprise les adaptations nécessaires.

Antea Group reste à la disposition du Maître d'ouvrage et des Responsables du projet pour assurer ces différentes missions, avec l'avancement global du projet.

Observations sur l'utilisation du rapport

Ce rapport, ainsi que les cartes ou documents, et toutes autres pièces annexées constituent un ensemble indissociable. Les incertitudes ou les réserves qui seraient mentionnées dans la prise en compte des résultats et dans les conclusions font partie intégrante du rapport.

En conséquence, l'utilisation qui pourrait être faite d'une communication ou d'une reproduction partielle de ce rapport et de ses annexes ainsi que toute interprétation au-delà des énonciations d'Antea Group ne sauraient engager la responsabilité de celui-ci. Il en est de même pour une éventuelle utilisation à d'autres fins que celles définies pour la présente prestation.

Les résultats des prestations et des investigations s'appuient sur un échantillonnage ; ce dispositif ne permet pas de lever la totalité des aléas liés à l'hétérogénéité des milieux naturels ou artificiels étudiés. Par ailleurs, la prestation a été réalisée à partir d'informations extérieures non garanties par Antea Group ; sa responsabilité ne saurait être engagée en la matière.

Antea Group s'est engagé à apporter tout le soin et la diligence nécessaire à l'exécution des prestations et s'est conformé aux usages de la profession. Antea Group conseille son Client avec pour objectif de l'éclairer au mieux. Cependant, le choix de la décision relève de la seule compétence de son Client.

Le Client autorise Antea Group à le nommer pour une référence scientifique ou commerciale. A défaut, Antea Group s'entendra avec le Client pour définir les modalités de l'usage commercial ou scientifique de la référence.

Ce rapport devient la propriété du Client après paiement intégral de la mission, son utilisation étant interdite jusqu'à ce paiement. A partir de ce moment, le Client devient libre d'utiliser le rapport et de le diffuser, sous réserve de respecter les limites d'utilisation décrites ci-dessus.

Pour rappel, les conditions générales de vente ainsi que les informations de présentation d'Antea Group sont consultables sur : https://www.anteagroup.fr/fr/annexes

ANNEXES

Annexe I: Synoptique des missions d'ingénierie géotechnique NF P 94 500 de novembre 2013

Annexe II : Bordereaux des sondages pressiométriques

Annexe III: Bordereaux des sondages pénétrométriques

Annexe IV: Résultats des essais en laboratoire

Annexe V : Bordereaux des fouilles à la pelle mécanique

Annexe VI: Résultats des analyses de corrosion des aciers par les sols et d'agressivité des sols

sur les bétons

Annexe I : Synoptique des missions d'ingénierie géotechnique NF P 94 500 de novembre 2013

Schéma d'enchaînement des missions d'ingénierie géotechnique

Enchainement des missions G1 à G4	Phases de la maîtrise d'œuvre	Mission d'ingéni	erie géotechnique e de la mission	Objectifs à atteindre pour les ouvrages géotechniques	Niveau de management des risques géotechniques attendu	Prestations d'investigations géotechniques à réaliser
Étape 1 : Étude		=	que préalable (G1) e de Site (ES)	Spécificités géotechniques du site	Première identification des risques présentés par le site	Fonction des données existantes et de la complexité géotechnique
géotechnique préalable (G1)	Étude préliminaire, esquisse, APS	Phase Principes Gén	que préalable (G1) éraux de Construction GC)	Première adaptation des futurs ouvrages aux spécificités du site	Première identification des risques pour les futurs ouvrages	Fonction des données existantes et de la complexité géotechnique
	APD/AVP	= .	e de conception (G2) t-projet (AVP)	Définition et comparaison des solutions envisageables pour le projet	Maguraa ayáyyatiyaa ayy	Fonction du site et de la complexité du projet (choix constructifs)
Étape 2 : Étude géotechnique de conception (G2)	PRO	= .	e de conception (G2) ojet (PRO)	Conception et justifications du projet	Mesures préventives pour la réduction des risques identifiés, mesures correctives pour les risques résiduels avec détection au	Fonction du site et de la complexité du projet (choix constructifs)
	DCE/ACT	= .	e de conception (G2) CE / ACT	Consultation sur le projet de base / Choix de l'entreprise et mise au point du contrat de travaux	plus tôt de leur survenance	
		À la charge de l'entreprise	À la charge du maître d'ouvrage			
Étape 3 : Études géotechniques de réalisation	EXE/VISA	Étude et suivi géotechniques d'exécution (G3) Phase Étude (en interaction avec la phase Suivi) Supervision géotechnique d'exécution (G4) Phase Supervision de l'étude d'exécution (en interaction avec la phase Supervision du suivi)		Étude d'exécution conforme aux exigences du projet, avec maîtrise de la qualité, du délai et du coût	ldentification des risques résiduels, mesures correctives, contrôle du management des risques	Fonction des méthodes de construction et des adaptations proposées si des risques identifiés surviennent
(G3/G4)	DET/AOR	Étude et suivi géotechniques d'exécution (G3) Phase Suivi (en interaction avec la phase Étude) Supervision géotechnique d'exécution (G4) Phase Supervision du suivi d'exécution (en interaction avec la phase Supervision de l'étude)		Exécution des travaux en toute sécurité et en conformité avec les attentes du maître d'ouvrage	résiduels (réalité des actions, vigilance, mémorisation, capitalisation des retours d'expérience)	Fonction du contexte géotechnique observé et du comportement de l'ouvrage et des avoisinants en cours de travaux
À toute étape d'un projet ou sur un ouvrage existant	Diagnostic	Diagnostic géotechnique (G5)		Influence d'un élément géotechnique spécifique sur le projet ou sur l'ouvrage existant	Influence de cet élément géotechnique sur les risques géotechniques identifiés	Fonction de l'élément géotechnique étudié

Classification des missions d'ingénierie géotechnique (page 1/2)

L'enchaînement des missions d'ingénierie géotechnique (étapes 1 à 3) doit suivre les étapes de conception et de réalisation de tout projet pour contribuer à la maîtrise des risques géotechniques. Le maître d'ouvrage ou son mandataire doit faire réaliser successivement chacune de ces missions par une ingénierie géotechnique. Chaque mission s'appuie sur des données géotechniques adaptées issues d'investigations géotechniques appropriées.

ETAPE 1: ETUDE GEOTECHNIQUE PREALABLE (G1)

Cette mission exclut toute approche des quantités, délais et coûts d'exécution des ouvrages géotechniques qui entre dans le cadre de la mission d'étude géotechnique de conception (étape 2). Elle est à la charge du maître d'ouvrage ou son mandataire. Elle comprend deux phases :

Phase Étude de Site (ES)

Elle est réalisée en amont d'une étude préliminaire, d'esquisse ou d'APS pour une première identification des risques géotechniques d'un site.

- Faire une enquête documentaire sur le cadre géotechnique du site et l'existence d'avoisinants avec visite du site et des alentours.
- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport donnant pour le site étudié un modèle géologique préliminaire, les principales caractéristiques géotechniques et une première identification des risques géotechniques majeurs.

Phase Principes Généraux de Construction (PGC)

Elle est réalisée au stade d'une étude préliminaire, d'esquisse ou d'APS pour réduire les conséquences des risques géotechniques majeurs identifiés. Elle s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les
- Fournir un rapport de synthèse des données géotechniques à ce stade d'étude (première approche de la ZIG, horizons porteurs potentiels, ainsi que certains principes généraux de construction envisageables (notamment fondations, terrassements, ouvrages enterrés, améliorations de sols).

ETAPE 2: ETUDE GEOTECHNIQUE DE CONCEPTION (G2)

Cette mission permet l'élaboration du projet des ouvrages géotechniques et réduit les conséquences des risques géotechniques importants identifiés. Elle est à la charge du maîtrie d'œuvre ou intégrée à cette dernière. Elle comprend trois phases :

Phase Avant-projet (AVP)

Elle est réalisée au stade de l'avant-projet de la maîtrise d'œuvre et s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport donnant les hypothèses géotechniques à prendre en compte au stade de l'avant-projet, les principes de construction envisageables (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sols, dispositions générales vis-à-vis des nappes et des avoisinants), une ébauche dimensionnelle par type d'ouvrage géotechnique et la pertinence d'application de la méthode observationnelle pour une meilleure maîtrise des risques géotechniques.

Phase Projet (PRO)

Elle est réalisée au stade du projet de la maîtrise d'œuvre et s'appuie obligatoirement sur des données géotechniques adaptées suffisamment représentatives pour le site.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un dossier de synthèse des hypothèses géotechniques à prendre en compte au stade du projet (valeurs caractéristiques des paramètres géotechniques en particulier), des notes techniques donnant les choix constructifs des ouvrages géotechniques (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sols, dispositions vis-à-vis des nappes et des avoisinants), des notes de calcul de dimensionnement, un avis sur les valeurs seuils et une approche des quantités.

Phase DCE / ACT

Elle est réalisée pour finaliser le Dossier de Consultation des Entreprises et assister le maître d'ouvrage pour l'établissement des Contrats de Travaux avec le ou les entrepreneurs retenus pour les ouvrages géotechniques.

- Établir ou participer à la rédaction des documents techniques nécessaires et suffisants à la consultation des entreprises pour leurs études de réalisation des ouvrages géotechniques (dossier de la phase Projet avec plans, notices techniques, cahier des charges particulières, cadre de bordereau des prix et d'estimatif, planning prévisionnel).
- Assister éventuellement le maître d'ouvrage pour la sélection des entreprises, analyser les offres techniques, participer à la finalisation des pièces techniques des contrats de travaux.

Classification des missions d'ingénierie géotechnique (page 2/2)

ETAPE 3: ETUDES GEOTECHNIQUES DE REALISATION (G3 et G4, distinctes et simultanées)

ETUDE ET SUIVI GEOTECHNIQUES D'EXECUTION (G3)

Cette mission permet de réduire les risques géotechniques résiduels par la mise en œuvre à temps de mesures correctives d'adaptation ou d'optimisation. Elle est confiée à l'entrepreneur sauf disposition contractuelle contraire, sur la base de la phase G2 DCE/ACT. Elle comprend deux phases interactives :

<u>Phase Étude</u>

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Étudier dans le détail les ouvrages géotechniques : notamment établissement d'une note d'hypothèses géotechniques sur la base des données fournies par le contrat de travaux ainsi que des résultats des éventuelles investigations complémentaires, définition et dimensionnement (calculs justificatifs) des ouvrages géotechniques, méthodes et conditions d'exécution (phasages généraux, suivis, auscultations et contrôles à prévoir, valeurs seuils, dispositions constructives complémentaires éventuelles).
- Élaborer le dossier géotechnique d'exécution des ouvrages géotechniques provisoires et définitifs: plans d'exécution, de phasage et de suivi.

Phase Suivi

- Suivre en continu les auscultations et l'exécution des ouvrages géotechniques, appliquer si nécessaire des dispositions constructives prédéfinies en phase Étude.
- Vérifier les données géotechniques par relevés lors des travaux et par un programme d'investigations géotechniques complémentaire si nécessaire (le réaliser ou en assurer le suivi technique, en exploiter les résultats).
- Etablir la prestation géotechnique du dossier des ouvrages exécutés (DOE) et fournir les documents nécessaires à l'établissement du dossier d'interventions ultérieures sur l'ouvrage (DIUO)

SUPERVISION GEOTECHNIQUE D'EXECUTION (G4)

Cette mission permet de vérifier la conformité des hypothèses géotechniques prises en compte dans la mission d'étude et suivi géotechniques d'exécution. Elle est à la charge du maître d'ouvrage ou son mandataire et est réalisée en collaboration avec la maîtrise d'œuvre ou intégrée à cette dernière. Elle comprend deux phases interactives :

Phase Supervision de l'étude d'exécution

Donner un avis sur la pertinence des hypothèses géotechniques de l'étude géotechnique d'exécution, des dimensionnements et méthodes d'exécution, des adaptations ou optimisations des ouvrages géotechniques proposées par l'entrepreneur, du plan de contrôle, du programme d'auscultation et des valeurs seuils.

Phase Supervision du suivi d'exécution

- Par interventions ponctuelles sur le chantier, donner un avis sur la pertinence du contexte géotechnique tel qu'observé par l'entrepreneur (G3), du comportement tel qu'observé par l'entrepreneur de l'ouvrage et des avoisinants concernés (G3), de l'adaptation ou de l'optimisation de l'ouvrage géotechnique proposée par l'entrepreneur (G3).
- Donner un avis sur la prestation géotechnique du DOE et sur les documents fournis pour le DIUO.

DIAGNOSTIC GEOTECHNIQUE (G5)

Pendant le déroulement d'un projet ou au cours de la vie d'un ouvrage, il peut être nécessaire de procéder, de façon strictement limitative, à l'étude d'un ou plusieurs éléments géotechniques spécifiques, dans le cadre d'une mission ponctuelle. Ce diagnostic géotechnique précise l'influence de cet ou ces éléments géotechniques sur les risques géotechniques identifiés ainsi que leurs conséquences possibles pour le projet ou l'ouvrage existant.

- Définir, après enquête documentaire, un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Étudier un ou plusieurs éléments géotechniques spécifiques (par exemple soutènement, causes géotechniques d'un désordre) dans le cadre de ce diagnostic, mais sans aucune implication dans la globalité du projet ou dans l'étude de l'état général de l'ouvrage existant.
- Si ce diagnostic conduit à modifier une partie du projet ou à réaliser des travaux sur l'ouvrage existant, des études géotechniques de conception et/ou d'exécution ainsi qu'un suivi et une supervision géotechniques seront réalisés ultérieurement, conformément à l'enchaînement des missions d'ingénierie géotechnique (étape 2 et/ou 3).

Annexe II : Bordereaux des sondages pressiométriques

SP1

Paramètres de forage

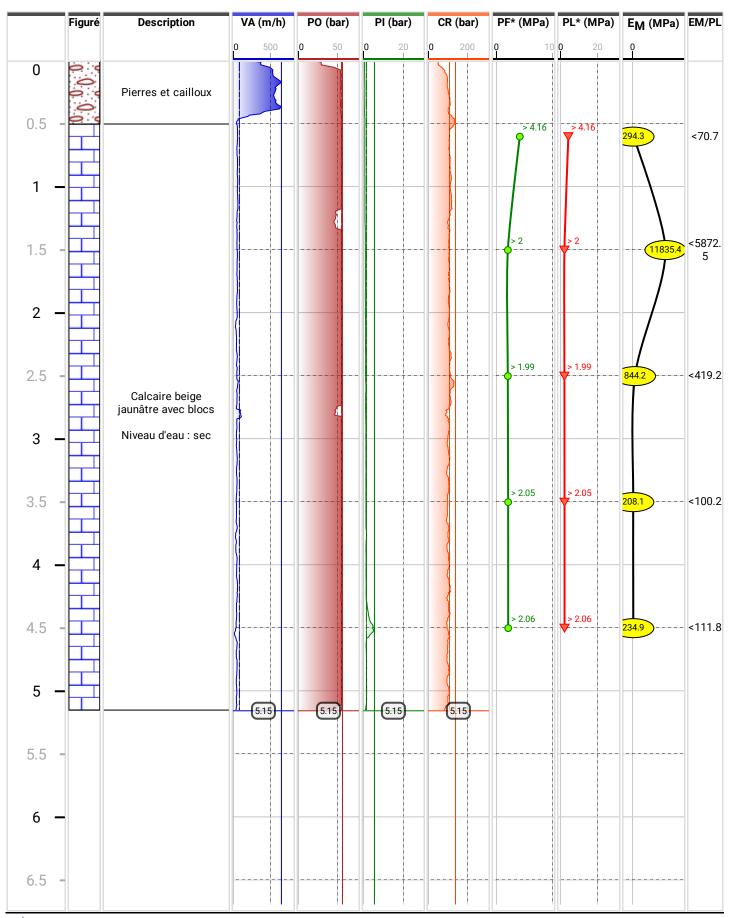
Cote début

Longueur

5.15 m

0 m

Cote fin


Date de fin 05/05/2022 5.15 m

Dossier

Date de début

02/05/2022

GUILON GRANDE CRAIE

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP1

Profondeur de l'essai (axe du forage) 0,6 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a

5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

Résistance propre de la sonde pel

TUBULURE

Type tubulure

Tubulure longueur totale

FLUIDES

Compressibilité du gaz

52140220502110752P

0,32 MPa

Coaxiale

25 m

Poids volumique du liquide 10 kN/m3

0,00015 1/m

	LECTURES SUR SITE									DO	NNÉES	APRÈ	S CORRE	CTION
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,058	0,058	0,058	0,058	8	8	8	8	80,0	0,037	7,7	7,7	0,0	-5,1
1	0,057	0,056	0,056	0,057	8	8	8	8	141,0	0,036	7,7	7,7	0,0	13,6
2	0,112	0,112	0,111	0,112	8	8	8	9	202,0	0,089	7,4	8,4	1,0	
3	0,211	0,143	0,131	0,123	8	48	79	92	264,0	0,089	78,3	91,4	13,0	1 699,5
4	0,305	0,282	0,275	0,274	129	150	157	165	336,0	0,132	155,6	163,6	8,0	311,3
5	0,400	0,379	0,375	0,375	176	187	191	193	401,0	0,220	189,1	191,1	2,0	166,8
6	0,597	0,574	0,573	0,568	210	218	222	224	466,0	0,400	219,1	221,1	2,0	77,6
7	0,903	0,869	0,867	0,867	241	246	247	248	530,0	0,689	242,6	243,6	1,0	34,8
8	1,387	1,354	1,355	1,350	269	268	266	267	595,0	1,165	259,1	260,1	1,0	15,6
9	2,370	2,330	2,326	2,323	294	289	288	287	661,0	2,131	276,2	275,2	-1,0	9,3
10	3,366	3,308	3,309	3,300	306	301	301	301	727,0	3,103	284,2	284,2	0,0	5,3
11	4,380	4,338	4,312	4,365	316	316	316	312	792,0	4,164	294,0	289,8	-4,3	

ESSAI

Date et heure

lundi 2 mai 2022 11:33:38

Nom de fichier

52140220502113338P

Controleur Pression Volume

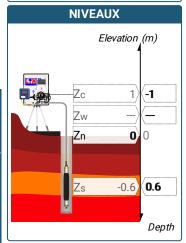
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,02 MPa

Pression différentielle

0,09 MPa

Observation

FORAGE

Machine de forage

Méthode de forage

EMCI 4.5

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

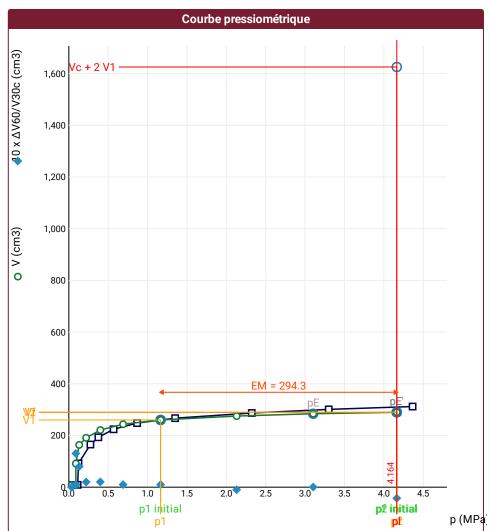
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP1

Profondeur de l'essai (axe du forage) 0,6 m

 \triangle Impossible de calculer p $_{
m L}$ double hyperbole (Essai)

Légende						
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :			
☑ Pr ₆₀ /V ₆₀	\square Pe(V _r)	Extrapolation	√ Résultats			
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés			
Pr ₁₅ /V ₁₅	✓ ∆V ^{60/30}	Extrapolation courbe quadratique				
Pr ₁ /V ₁	☐ 1/V	hyperbolique				
_	_	Extrapolation				
		courbe double				
		hyperbole				

RÉSULT <i>A</i>	ATS NORMA	TIFS	CALCULÉS
σhs	0,01 MPa		
P1 initial	1,17 MPa	V_{7}	260 cm3
		i	
P1	1,17 MPa	V7	260 cm3
PΕ	3,1 MPa	VE	284 cm3
P2 initial	4,16 MPa	<i>V</i> 2	290 cm3
		i	
<i>p</i> 2	4,16 MPa	<i>V</i> 2	290 cm3
Pf initial	4,16 MPa	Vf j	290 cm3
pf >	4,16 MPa	V_f	290 cm3
<i>pf*</i> >	4,16 MPa		
pL >	4,16 MPa	V_L	1626 cm3
pL* >	4,16 MPa		
EM	294,26 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
E _M /p _L <	70,665		
E _M /p _L *	70,757		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE								
PL direct Méthode utilisée	Extrapolations invalides							
N A 5 + lo l -	Α	0 MPa						
Méthode volumes	В	0 cm3						
inverses	Erreur moyenne	1 cm3						
iiivei ded	PLR	35,69 MPa						
Méthode	С							
quadratique	D							
hyperbolique	Erreur moyenne							
, p =	PLH							
	A1							
	A2							
Méthode	A3							
double	A4							
hyperbole	A5							
71-1-10-10	A6							
	Erreur moyenne							
	PLDH							

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

Date et heure

GUILON GRANDE CRAIE

Nom du forage

SP1

ESSAI

Profondeur de l'essai (axe du forage) 1,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage dį

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a

5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

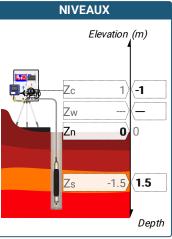
FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz 0,00015 1/m

lundi 2 mai 2022 11:49:44
Nom de fichier 52140220502114944P
Controleur Pression Volume CPVA001
Appareil 52140
Opérateur OLIV

0,08 MPa


0,03 MPa

Pression hydrostatique

Pression différentielle

Observation

	LECTURES SUR SITE											APRÈ	S CORRE	CTION
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	ΔV ^{60/30}	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,058	0,056	0,060	0,062	45	71	94	105	80,0	-0,040	93,7	104,7	11,0	1 568,8
1	0,095	0,090	0,087	0,086	109	121	124	125	141,0	-0,027	123,6	124,6	1,0	1 732,8
2	0,198	0,179	0,168	0,165	141	171	188	200	205,0	0,016	187,1	199,2	12,0	524,2
3	0,292	0,280	0,275	0,275	217	232	240	248	270,0	0,106	238,6	246,6	8,0	196,8
4	0,507	0,481	0,481	0,477	266	281	285	286	336,0	0,294	282,6	283,6	1,0	77,9
5	0,798	0,776	0,775	0,774	303	308	309	310	401,0	0,583	305,1	306,1	1,0	34,9
6	1,282	1,265	1,280	1,280	328	328	329	330	465,0	1,082	322,5	323,5	1,0	0,3
7	2,273	2,225	2,219	2,215	342	336	335	335	530,0	2,015	323,7	323,7	0,0	

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

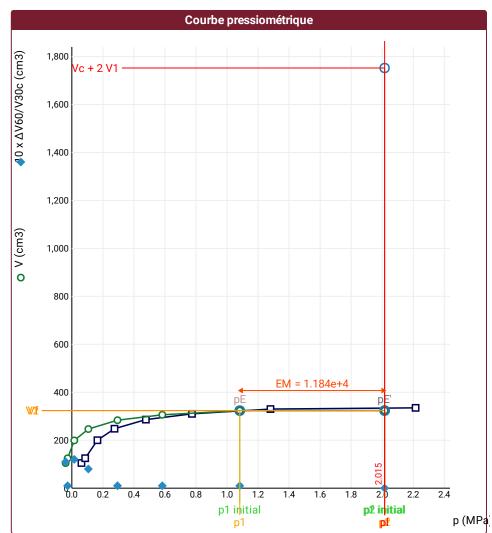
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP1

Profondeur de l'essai (axe du forage) 1,5 m

⚠ Impossible de calculer pL double hyperbole (Essai)

Légende										
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :							
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	√ Résultats							
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés							
Pr ₁₅ /V ₁₅	✓ ∆V ^{60/30}	Extrapolation courbe quadratique								
Pr ₁ /V ₁	1/V	hyperbolique								
		Extrapolation courbe double								
		hyperbole								

RÉSULT	ATS NORMA	TIFS	CALCULÉS
σhs	0,01 MPa		
P1 initial	1,08 MPa	V_{7}	323 cm3
		i	
P1	1,08 MPa	V1	323 cm3
PΕ	1,08 MPa	V_E	323 cm3
P2 initial	2,02 MPa	V2	324 cm3
		i	
<i>p</i> 2	2,02 MPa	<i>V</i> 2	324 cm3
Pf initial	2,02 MPa	Vf j	324 cm3
pf >	2,02 MPa	V_f	324 cm3
<i>pf*</i> >	2 MPa		
pL >	2,02 MPa	V_L	1752 cm3
pL* >	2 MPa		
EM	11835,35 MPa	a Méth	ode de calcul
		de E	М
		Т	ube fendu
E _M /p _L <	5872,461		
EM/pL*	5912,063		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE									
PL direct Méthode utilisée	Extrapolations invalides								
Méthode	A B	0 MPa 0 cm3							
volumes inverses	Erreur moyenne PLR	5 cm3 24,91 MPa							
Méthode quadratique hyperbolique	C D Erreur moyenne PLH								
Méthode double	A1 A2 A3 A4								
hyperbole	A5 A6 Erreur moyenne PLDH								

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP1

Profondeur de l'essai (axe du forage) 2,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage dį

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

Résistance propre de la sonde pel

TUBULURE

Tubulure longueur totale

FLUIDES

0,00015 1/m

(INERTIE)

52140220502110752P

0,32 MPa

Type tubulure

Coaxiale

25 m

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz

	LECTURES SUR SITE											DONNÉES APRÈS CORRECTION			
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$	
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa	
0	0,056	0,058	0,056	0,061	13	40	71	109	60,0	-0,033	70,7	108,7	38,0	1 864,2	
1	0,093	0,087	0,087	0,086	114	126	130	132	122,0	-0,021	129,6	131,6	2,0	1 636,7	
2	0,199	0,180	0,175	0,177	148	176	194	217	187,0	0,031	193,1	216,1	23,0	501,3	
3	0,305	0,290	0,284	0,281	232	249	258	261	252,0	0,117	256,6	259,6	3,0	101,9	
4	0,481	0,475	0,473	0,475	277	279	280	281	318,0	0,304	277,6	278,6	1,0	60,3	
5	0,800	0,774	0,773	0,772	297	300	300	300	383,0	0,594	296,1	296,1	0,0	35,0	
6	1,292	1,268	1,274	1,277	321	320	319	320	450,0	1,092	312,5	313,5	1,0	3,6	
7	2,274	2,211	2,205	2,201	335	329	328	328	515,0	2,014	316,8	316,8	0,0		

ESSAI

Date et heure

lundi 2 mai 2022 12:00:54

Nom de fichier

52140220502120054P

Controleur Pression Volume

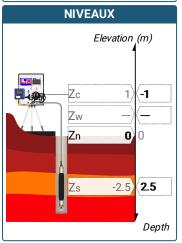
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,04 MPa

Pression différentielle

0,07 MPa

Observation

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

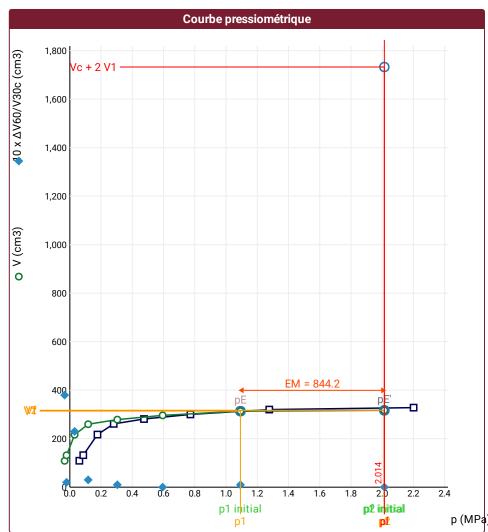
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP1

Profondeur de l'essai (axe du forage) 2,5 m

⚠ Impossible de calculer pL double hyperbole (Essai)

Légende											
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :								
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	✓ Résultats								
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés								
Pr ₁₅ /V ₁₅	\checkmark Δ V ^{60/30}	Extrapolation courbe quadratique									
Pr ₁ /V ₁	1/V	hyperbolique									
		Extrapolation courbe double hyperbole									

RÉSULT <i>A</i>	ATS NORMA	TIFS	CALCULÉS
σhs	0,02 MPa		
P1 initial	1,09 MPa	V_{7}	313 cm3
		i	
<i>p</i> 1	1,09 MPa	V1	313 cm3
PΕ	1,09 MPa	VE	313 cm3
P2 initial	2,01 MPa	<i>V</i> 2	317 cm3
		i	
p ₂	2,01 MPa	<i>V</i> 2	317 cm3
Pf initial	2,01 MPa	V_{fi}	317 cm3
pf >	2,01 MPa	V_f	317 cm3
<i>pf*</i> >	1,99 MPa		
pL >	2,01 MPa	V_L	1732 cm3
p <u>L</u> * >	1,99 MPa		
EM	844,16 MPa	Méth	ode de calcul
		de <i>E</i> /	М
		Т	ube fendu
EM/pL<	419,2		
EM/pL*	423,937		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE									
PL direct									
Méthode utilisée	Extrapolations invalides								
NA SALO O ALO	Α	0 MPa							
Méthode volumes	В	0 cm3							
inverses	Erreur moyenne	5 cm3							
IIIVCI GCG	PLR	20,17 MPa							
Méthode	С								
quadratique	D								
hyperbolique	Erreur moyenne								
, po. 50 quo	PLH								
	A1								
	A2								
N 4 á t la a al a	A3								
Méthode double	A4								
hyperbole	A5								
, p = 1 5010	A ₆								
	Erreur moyenne								
	PLDH								

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP1

Profondeur de l'essai (axe du forage) 3,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a

5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz 0,00015 1/m

LECTURES SUR SITE											NNÉES	APRÈ	S CORREC	CTION
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,056	0,058	0,056	0,061	13	44	81	112	60,0	-0,025	80,7	111,7	31,0	1 849,5
1	0,096	0,090	0,088	0,087	115	129	133	136	121,0	-0,012	132,6	135,6	3,0	1 721,7
2	0,200	0,178	0,177	0,175	149	183	203	221	185,0	0,037	202,1	220,1	18,0	489,1
3	0,303	0,285	0,282	0,281	236	258	263	265	249,0	0,126	261,6	263,6	2,0	120,2
4	0,493	0,482	0,481	0,481	282	287	287	289	314,0	0,317	284,6	286,6	2,0	45,2
5	0,781	0,767	0,767	0,764	303	303	303	303	378,0	0,595	299,1	299,1	0,0	28,1
6	1,305	1,280	1,277	1,281	320	319	319	320	444,0	1,106	312,5	313,5	1,0	7,2
7	2,271	2,240	2,260	2,256	334	330	332	332	510,0	2,077	320,5	320,5	0,0	

ESSAI

Date et heure

lundi 2 mai 2022 12:12:21

Nom de fichier

52140220502121221P

Controleur Pression Volume

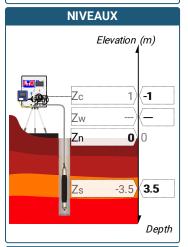
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,05 MPa

Pression différentielle

0,07 MPa

Observation

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

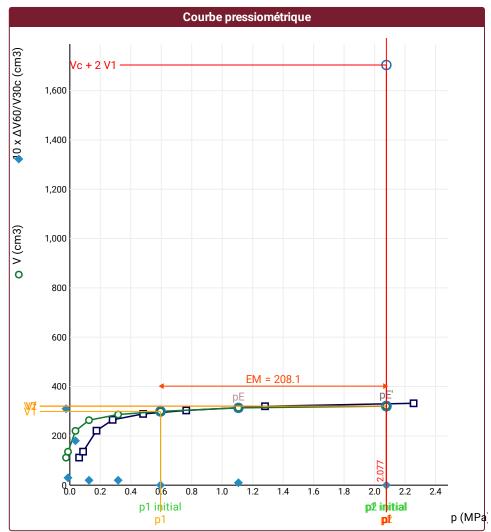
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP1

Profondeur de l'essai (axe du forage) 3,5 m

⚠ Impossible de calculer pL double hyperbole (Essai)

	Légende											
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :									
☑ Pr ₆₀ /V ₆₀	\square Pe(V _r)	Extrapolation	√ Résultats									
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés									
Pr ₁₅ /V ₁₅	✓ ∆V ^{60/30}	Extrapolation courbe quadratique										
Pr ₁ /V ₁	☐ 1/V	hyperbolique										
_	_	Extrapolation										
		courbe double										
		hyperbole										

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,03 MPa		
P1 initial	0,6 MPa	V_{7}	299 cm3
		i	
P1	0,6 MPa	V_{7}	299 cm3
PΕ	1,11 MPa	VE	313 cm3
P2 initial	2,08 MPa	<i>V</i> 2	321 cm3
		i	
<i>p</i> 2	2,08 MPa	V_2	321 cm3
Pf initial	2,08 MPa	Vf i	321 cm3
pf >	2,08 MPa	V_f	321 cm3
pf* >	2,05 MPa		
pL >	2,08 MPa	V_L	1704 cm3
pL* >	2,05 MPa		
EM	208,1 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
EM/pL<	100,174		
EM/pL*	101,716		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE								
PL direct Méthode utilisée	Extrapolations invalides							
N A 5 + lo l -	Α	0 MPa						
Méthode volumes	В	0 cm3						
inverses	Erreur moyenne	3 cm3						
iiivei ded	PLR	20,01 MPa						
Méthode	С							
quadratique	D							
hyperbolique	Erreur moyenne							
, p =	PLH							
	A1							
	A2							
Méthode	A3							
double	A4							
hyperbole	A5							
71-1-10-10	A6							
	Erreur moyenne							
	PLDH							

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP1

Profondeur de l'essai (axe du forage) 4,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

LECTURES SUR SITE

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

DONNÉES APRÈS CORRECTION

0,00015 1/m

Compressibilité du gaz

Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,056	0,057	0,058	0,062	13	46	83	113	60,0	-0,014	82,7	112,7	30,0	1 595,0
1	0,093	0,091	0,089	0,090	132	135	136	137	141,0	0,000	135,5	136,5	1,0	727,5
2	0,200	0,187	0,186	0,182	154	179	185	187	205,0	0,069	184,1	186,1	2,0	191,8
3	0,303	0,297	0,292	0,292	199	204	206	207	269,0	0,170	204,5	205,5	1,0	85,2
4	0,504	0,488	0,487	0,487	219	222	222	224	334,0	0,358	219,5	221,5	2,0	34,0
5	0,782	0,774	0,775	0,772	235	235	235	235	400,0	0,638	231,1	231,1	0,0	22,8
6	1,283	1,273	1,279	1,279	249	249	249	249	464,0	1,140	242,5	242,5	0,0	6,3
7	2,301	2,246	2,249	2,244	261	260	260	260	530,0	2,101	248,6	248,6	0,0	

ESSAI

Date et heure

lundi 2 mai 2022 12:23:23

Nom de fichier

52140220502122323P

Controleur Pression Volume

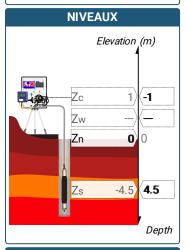
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,06 MPa

Pression différentielle

0,07 MPa

Observation

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

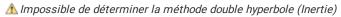
Base du tubage

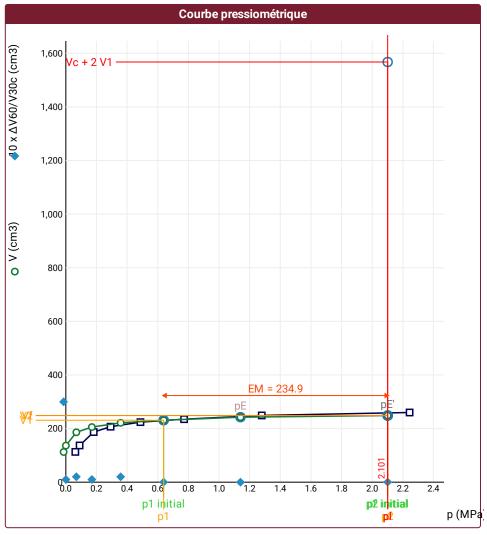
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier


GUILON GRANDE CRAIE


Nom du forage

SP1

Profondeur de l'essai (axe du forage) 4,5 m

 \triangle Impossible de calculer p $_{
m L}$ double hyperbole (Essai)

Légende										
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :							
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	√ Résultats							
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés							
Pr ₁₅ /V ₁₅	\checkmark Δ V ^{60/30}	Extrapolation courbe quadratique								
Pr ₁ /V ₁	☐ 1/V	hyperbolique								
		Extrapolation								
		courbe double hyperbole								

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,04 MPa		
P1 initial	0,64 MPa	V1	231 cm3
		i	
<i>p</i> 1	0,64 MPa	V1	231 cm3
PΕ	1,14 MPa	VE	242 cm3
P2 initial	2,1 MPa	<i>V</i> 2	249 cm3
		i	
<i>p</i> 2	2,1 MPa	<i>V</i> 2	249 cm3
Pf initial	2,1 MPa	V _f i	249 cm3
pf >	2,1 MPa	V_f	249 cm3
<i>pf*</i> >	2,06 MPa		
pL >	2,1 MPa	V_L	1568 cm3
pL* >	2,06 MPa		
EM	234,94 MPa	Méth	ode de calcul
		de E	Л
		Т	ube fendu
E _M /p _L <	111,83		
EM/pL*	114,028		
pL*/pf*	1		

PL / PI								
DÉTERMINATION DE LA PRESSION LIMITE								
PL direct								
Méthode utilisée	Extrapolations invalides							
NAZIL I	Α	0 MPa						
Méthode volumes	В	0 cm3						
inverses	Erreur moyenne	3 cm3						
IIIVCI GCG	PLR	19,38 MPa						
Méthode	С							
quadratique	D							
hyperbolique	Erreur moyenne							
, p	PLH							
	A1							
	A2							
Méthode	A3							
double	A4							
hyperbole	A5							
71-1-0-1-0	A6							
	Erreur moyenne							
	PLDH							

SP2

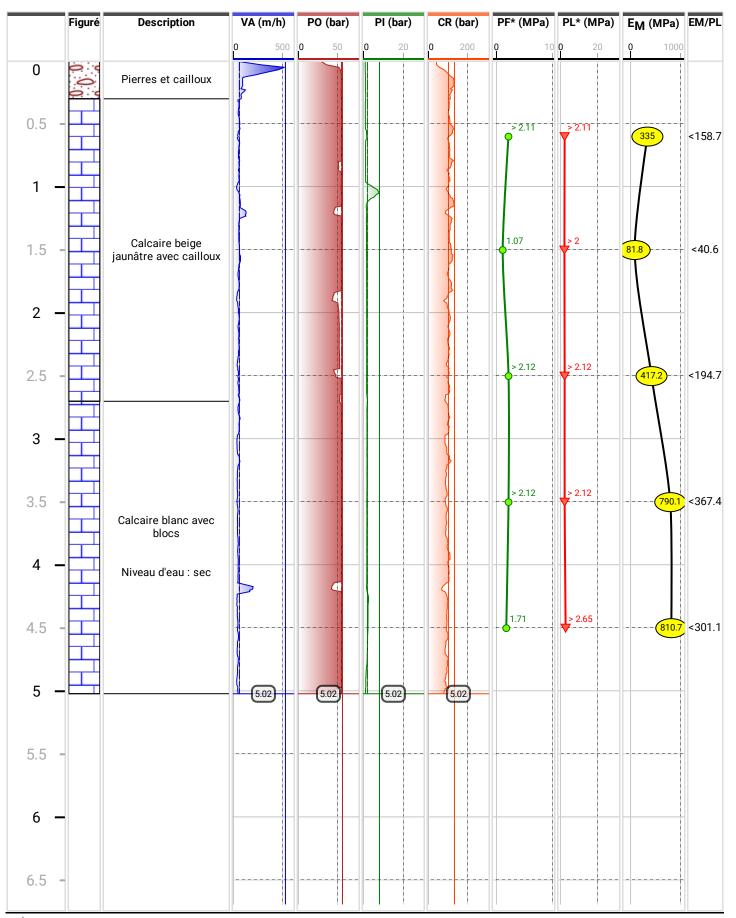
Paramètres de forage

Cote début

0 m

Longueur 5.02 m

Date de fin


Cote fin 05/05/2022 5.02 m

Dossier

Date de début

02/05/2022

GUILON GRANDE CRAIE

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE

GOILON GRANDL CRA

Nom du forage

SP2

Profondeur de l'essai (axe du forage) 0,6 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

LECTURES SUR SITE

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) $d_{\mathcal{C}}$

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale $V_{\mathcal{C}}$

1105 cm3

Coefficient d'étalonnage *a* 5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde *pel* **0,32 MPa**

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz

0,00015 1/m

DONNÉES APRÈS CORRECTION

										DOMNELO AL REGIONALO HON				
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,058	0,058	0,058	0,062	40	62	82	101	80,0	-0,046	81,7	100,7	19,0	-910,7
1	0,062	0,061	0,061	0,061	101	103	103	103	141,0	-0,049	102,7	102,7	0,0	1 322,2
2	0,150	0,134	0,131	0,128	112	138	149	155	203,0	-0,010	148,3	154,3	6,0	1 268,2
3	0,249	0,231	0,228	0,228	175	200	217	237	268,0	0,055	215,8	235,8	20,0	385,4
4	0,342	0,328	0,325	0,322	249	262	267	269	332,0	0,136	265,3	267,4	2,0	114,5
5	0,552	0,530	0,529	0,531	283	291	292	293	397,0	0,337	289,3	290,3	1,0	40,9
6	0,833	0,818	0,818	0,818	306	305	305	306	461,0	0,619	300,8	301,8	1,0	15,0
7	1,340	1,319	1,317	1,318	318	317	316	316	526,0	1,116	309,3	309,3	0,0	5,9
8	2,354	2,298	2,301	2,317	330	325	326	327	592,0	2,111	314,3	315,2	0,9	

ESSAI

Date et heure

lundi 2 mai 2022 13:20:08

Nom de fichier

52140220502132008P

Controleur Pression Volume

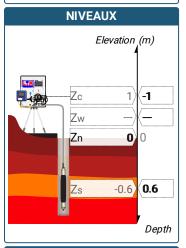
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,02 MPa

Pression différentielle

0,09 MPa

Observation

FORAGE

Machine de forage

Méthode de forage

EMCI 4.5

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

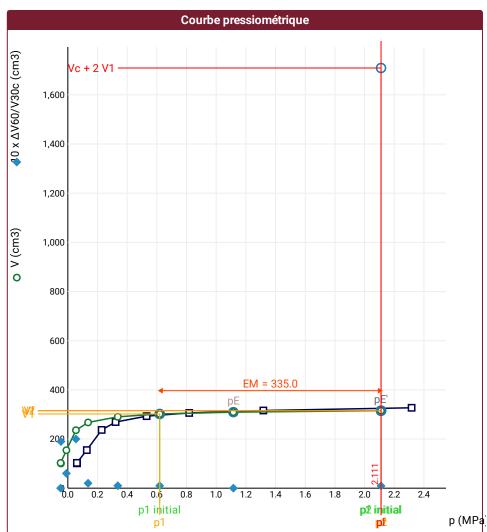
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP2

Profondeur de l'essai (axe du forage) 0,6 m

⚠ Impossible de calculer pL double hyperbole (Essai)

Légende											
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :								
Pr ₆₀ /V ₆₀ □ Pr ₃₀ /V ₃₀	\square P _e (V _r)	Extrapolation courbe inverse	Résultats normatifs calculés								
Pr ₁₅ /V ₁₅	✓ ΔV ^{60/30}	Extrapolation courbe quadratique									
Pr ₁ /V ₁	1/V	hyperbolique Extrapolation									
		courbe double hyperbole									

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,01 MPa		
P1 initial	0,62 MPa	V_{7}	302 cm3
		i	
<i>p</i> 1	0,62 MPa	V_{7}	302 cm3
PΕ	1,12 MPa	VE	309 cm3
P2 initial	2,11 MPa	<i>V</i> 2	315 cm3
		i	
<i>p</i> 2	2,11 MPa	<i>V</i> 2	315 cm3
Pf initial	2,11 MPa	Vf i	315 cm3
pf >	2,11 MPa	V_f	315 cm3
<i>pf*</i> >	2,11 MPa		
pL >	2,11 MPa	V_L	1709 cm3
p <u>L</u> * >	2,11 MPa		
Ем	334,97 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
EM/pL<	158,675		
EM/pL*	159,082		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE									
PL direct									
Méthode utilisée	Extrapolatio	ns invalides							
Méthode	Α	0 MPa							
volumes	В	0 cm3							
inverses	Erreur moyenne	1 cm3							
	PLR	30,97 MPa							
Méthode	С								
quadratique	D								
hyperbolique	Erreur moyenne								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PLH								
	A1								
	A2								
Méthode	A3								
double	A4								
hyperbole	A5								
, p =	A6								
	Erreur moyenne								
	PLDH								

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

Date et heure

Nom de fichier

Appareil

Opérateur

Observation

GUILON GRANDE CRAIE

Nom du forage

SP2

ESSAI

lundi 2 mai 2022 13:32:29

52140220502133229P

CPVA001

52140

OLIV

0,03 MPa

0,08 MPa

Controleur Pression Volume

Pression hydrostatique

Pression différentielle

Profondeur de l'essai (axe du forage) 1,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage dį

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

Opérateur

52140220502110752P

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

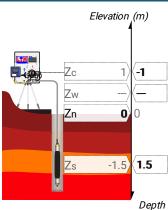
Tubulure longueur totale

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz 0,00015 1/m

lundi 2 mai 2022 11:07:52


OLIV

Nom de fichier

Coaxiale

25 m

<u>NI</u>VEAUX

LECTURES SUR SITE											NNÉES	APRÈ	S CORRE	CTION
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	ΔV ^{60/30}	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	s	MPa	cm3	cm3	cm3	cm3/MPa
0	0,062	0,061	0,060	0,062	45	67	91	113	80,0	-0,044	90,7	112,7	22,0	1 437,0
1	0,096	0,093	0,090	0,088	116	128	132	134	141,0	-0,030	131,5	133,6	2,0	1 695,0
2	0,201	0,182	0,176	0,176	151	178	196	218	206,0	0,019	195,1	217,1	22,0	541,5
3	0,296	0,281	0,275	0,278	232	248	256	264	270,0	0,103	254,6	262,6	8,0	154,1
4	0,490	0,475	0,473	0,477	280	288	291	294	335,0	0,291	288,6	291,6	3,0	50,7
5	0,789	0,772	0,770	0,769	309	310	310	310	399,0	0,578	306,1	306,1	0,0	28,6
6	1,288	1,273	1,278	1,278	327	327	327	327	464,0	1,081	320,5	320,5	0,0	-3,0
7	2,265	2,220	2,214	2,212	337	330	330	329	530,0	2,014	318,7	317,7	-1,0	

FORAGE

Machine de forage

Méthode de forage

EMCI 4.5

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

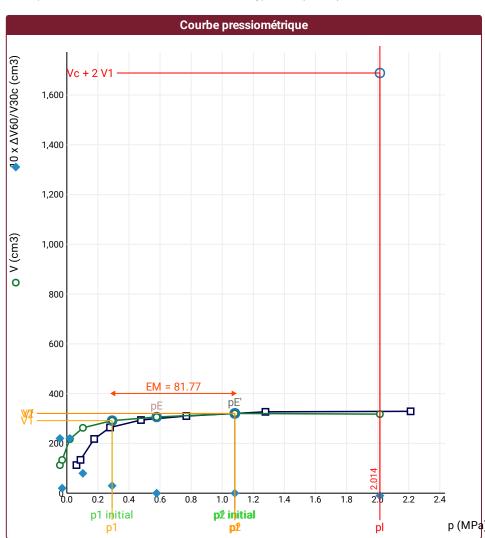
Base du tubage

Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier


GUILON GRANDE CRAIE

Nom du forage

SP2

Profondeur de l'essai (axe du forage) 1,5 m

- ⚠ Impossible de calculer pL quadratique hyperbolique (Essai)
- ⚠ Impossible de calculer pL double hyperbole (Essai)
- ⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

Légende											
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :								
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	√ Résultats								
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés								
Pr ₁₅ /V ₁₅	\checkmark $\Delta V^{60/30}$	Extrapolation courbe quadratique									
Pr ₁ /V ₁	1/V	hyperbolique									
		Extrapolation courbe double hyperbole									

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,01 MPa		
P1 initial	0,29 MPa	V1	292 cm3
		i	
<i>p</i> 1	0,29 MPa	V_{7}	292 cm3
pΕ	0,58 MPa	VE	306 cm3
P2 initial	1,08 MPa	V2	320 cm3
		i	
<i>p</i> 2	1,08 MPa	<i>V</i> 2	320 cm3
Pf initial	1,08 MPa	Vf i	320 cm3
pf =	1,08 MPa	V_f	320 cm3
<i>pf*</i> =	1,07 MPa		
pL >	2,01 MPa	V_L	1689 cm3
pL* >	2 MPa		
EM	81,77 MPa	Méth	ode de calcul
		de E	М
		Т	ube fendu
EM/pL<	40,592		
EM/pL*	40,865		
pL*/pf*	1,874		

DÉTERMINATION DE LA PRESSION LIMITE						
PL direct						
Méthode utilisée	Extrapolatio	ns invalides				
NA SALE E ELE	А	0 MPa				
Méthode volumes	В	0 cm3				
inverses	Erreur moyenne	4 cm3				
IIIVCIGCG	PLR	38,56 MPa				
Méthode	С					
quadratique	D					
hyperbolique	Erreur moyenne					
nyperbonque	PLH					
	A1	17930				
	A2	39,462				
NACOL I	A3	107,64				
Méthode double	A4	-8298500				
hyperbole	A5	-0,896				
Пурствоїс	A6	471,12				
	Erreur moyenne	1 cm3				
	PLDH					

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP2

Profondeur de l'essai (axe du forage) 2,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

ESSAI DE RÉSISTANCE

Date et heure

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

Tubulure longueur totale

FLUIDES

Poids volumique du liquide 10 kN/m3

0,00015 1/m

PROPRE À LA SONDE
(INERTIE)
at hours

lundi 2 mai 2022 11:07:52

Coaxiale

25 m

Compressibilité du gaz

	LECTURES SUR SITE								DONNEES APRES CORRECTION					
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,062	0,060	0,062	0,064	50	76	103	115	80,0	-0,034	102,7	114,7	12,0	1 611,9
1	0,105	0,098	0,098	0,094	120	133	138	141	142,0	-0,018	137,5	140,5	3,0	1 704,8
2	0,201	0,183	0,178	0,176	156	181	197	220	206,0	0,029	196,1	219,1	23,0	549,8
3	0,307	0,291	0,284	0,281	237	255	264	268	274,0	0,115	262,6	266,6	4,0	196,5
4	0,399	0,383	0,381	0,382	277	284	285	287	338,0	0,209	283,1	285,1	2,0	89,2
5	0,589	0,572	0,571	0,568	299	303	303	304	401,0	0,389	300,1	301,1	1,0	48,1
6	0,893	0,875	0,875	0,874	319	320	320	320	467,0	0,689	315,5	315,6	0,0	21,6
7	1,407	1,373	1,367	1,364	334	333	333	333	531,0	1,175	326,0	326,1	0,0	0,1
8	2,367	2,300	2,353	2,333	342	334	337	338	595,0	2,142	325,0	326,1	1,1	

ESSAI

Date et heure

lundi 2 mai 2022 13:43:54

Nom de fichier

52140220502134354P

Controleur Pression Volume

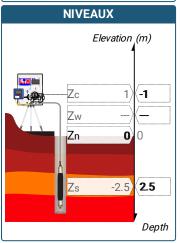
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,04 MPa

Pression différentielle

0,07 MPa

Observation

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

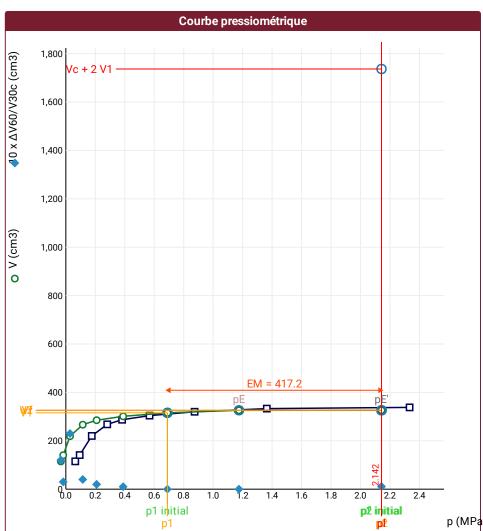
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP2

Profondeur de l'essai (axe du forage) 2,5 m

⚠ Impossible de calculer pL double hyperbole (Essai)

🛕 Impossible de déterminer la méthode double hyperbole (Inertie)

Légende						
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :			
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	✓ Résultats			
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés			
Pr ₁₅ /V ₁₅	✓ ΔV ^{60/30}	Extrapolation				
Pr ₁ /V ₁		courbe quadratique hyperbolique				
		Extrapolation				
		courbe double				
		hyperbole				

RESULTA	ATS NORMA	TIFS	CALCULES
σhs	0,02 MPa		
P1 initial	0,69 MPa	V_{7}	316 cm3
		i	
<i>p</i> 1	0,69 MPa	V_{7}	316 cm3
pΕ	1,18 MPa	VE	326 cm3
P2 initial	2,14 MPa	<i>V</i> 2	326 cm3
		i	
p ₂	2,14 MPa	<i>V</i> 2	326 cm3
Pf initial	2,14 MPa	Vf j	326 cm3
pf >	2,14 MPa	V_f	326 cm3
pf* >	2,12 MPa		
pL >	2,14 MPa	V_L	1737 cm3
p <u>L</u> * >	2,12 MPa		
Ем	417,19 MPa	Méth	node de calcul
		de E	М
		Т	ube fendu
E _M /p _L <	194,731		
EM/pL*	196,798		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE					
PL direct Méthode utilisée	Extrapolatio	ns invalides			
NACH I	Α	0 MPa			
Méthode volumes	В	0 cm3			
inverses	Erreur moyenne	3 cm3			
IIIVCIGCG	PLR	42,89 MPa			
Méthode	С				
quadratique	D				
hyperbolique	Erreur moyenne				
,po. 50quo	PLH				
	A1				
	A2				
Méthode	A3				
double	A4				
hyperbole	A5				
7,500.00	A6				
	Erreur moyenne				
	PLDH				

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP2

Profondeur de l'essai (axe du forage) 3,5 m

🛕 Impossible de déterminer la méthode double hyperbole (Inertie)

LECTURES SUR SITE

Pr60

MPa

0.065

0,089

0.178

0,267

0,379

0,582

0,878

1,359

2,332

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Palier pr1

0

1

2

3

4

5

6

7

8

MPa

0,061

Résistance propre de la membrane p_m 0,05 MPa

Pr15

MPa

0,100 0,093 0,093

0,201 0,178 0,178

0,288 0,277 0,271

0,405 0,381 0,379

0,598 0,582 0,581

0,877 0,862 0,867

1,383 1,356 1,356

2,400 2,337 2,335

0,062 0,062

Pr30

MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage dį

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

V1 V15 V30 V60 Temps

cm3

115

328

340 341

80.0

141,0

205.0

270,0

333,0

397,0

461,0

526,0

591,0

cm3 cm3 cm3

84 105

118 130 134 136

150 183 205 227

243 258 265 270

278 293 296 297

311 315 315 316

327 327 326

55

337 333 332 333

344 341

ESSAI DE RÉSISTANCE

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

10 kN/m3

0.00015 1/m

PROPRE À LA SONDE
(INERTIE)
ot hours

52140220502110752P

Poids volumique du liquide

Compressibilité du gaz

DONNÉES APRÈS CORRECT

V

114.7

135,5

226.1

295,1

323,5

326,1

329,1

V30c

cm3

104,7

133,5

204.1

294,1

321,6

325,1

328,1

263,6 268,6

312,0 313,0

p

MPa

-0.023

-0,010

0.038

0,110

0,212

0,409

0,701

1,180

2,150

Zc	CTION	S CORRE
Zw	$\Delta V^{60/60}/\Delta P$	ΔV ^{60/30}
Zn	cm3/MPa	cm3
Å	1 655,2	10,0
Zs	1 899,2	2,0
U ==	587,4	22,0
_	258,4	5,0
	91,5	1,0
FOR	35,9	1,0
Machine de forage	5,3	1,9
EMC	3,1	1,0
Méthode de forage		1,0

ESSAI

Date et heure

lundi 2 mai 2022 13:56:32

Nom de fichier

52140220502135632P

Controleur Pression Volume

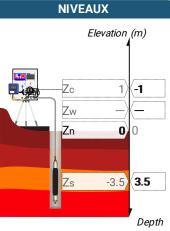
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,05 MPa

Pression différentielle

0,07 MPa

Observation

FORAGE

EMCI 4.5

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

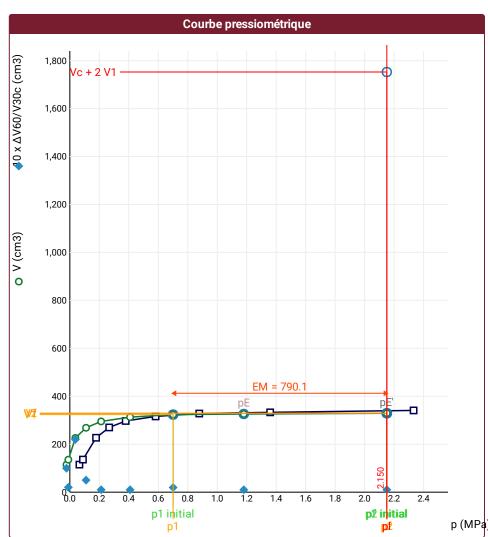
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP2

Profondeur de l'essai (axe du forage) 3,5 m

⚠ Impossible de calculer pL double hyperbole (Essai)

🛕 Impossible de déterminer la méthode double hyperbole (Inertie)

Légende					
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :		
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	✓ Résultats		
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés		
Pr ₁₅ /V ₁₅	✓ ΔV ^{60/30}	Extrapolation			
Pr ₁ /V ₁		courbe quadratique hyperbolique			
_	_	Extrapolation			
		courbe double			
		hyperbole			

RÉSULTATS NORMATIFS CALCULÉS						
σhs	0,03 MPa					
P1 initial	0,7 MPa	V1	324 cm3			
		i				
<i>p</i> 1	0,7 MPa	V_{7}	324 cm3			
PΕ	1,18 MPa	VE	326 cm3			
P2 initial	2,15 MPa	<i>V</i> 2	329 cm3			
		i				
<i>p</i> 2	2,15 MPa	<i>V</i> 2	329 cm3			
Pf initial	2,15 MPa	V _f i	329 cm3			
pf >	2,15 MPa	V_f	329 cm3			
<i>pf*</i> >	2,12 MPa					
<i>pL</i> >	2,15 MPa	V_L	1753 cm3			
p <u>L</u> * >	2,12 MPa					
EM	790,06 MPa	Méth	ode de calcul			
		de <i>E</i>	М			
		Т	ube fendu			
EM/pL<	367,397					
EM/pL*	372,859					
pL*/pf*	1					

DETERMII	DÉTERMINATION DE LA PRESSION LIMITE					
PL direct						
Méthode utilisée	Extrapolations invalides					
Mari	Α	0 MPa				
Méthode volumes	В	0 cm3				
inverses	Erreur moyenne	0 cm3				
IIIVCIGCG	PLR	72,13 MPa				
Méthode	С					
	D					
quadratique hyperbolique	Erreur moyenne					
nyperbonque	PLH					
	A1					
	A2					
Méthode	A3					
double	A4					
hyperbole	A5					
Пурствого	A ₆					
	Erreur moyenne					
	PLDH					

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP2

ESSAI

52140

Profondeur de l'essai (axe du forage) 4,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) $d_{\mathcal{C}}$

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE

Date

Opér

Nom

52140220502110752P

Résistance propre de la sonde pel 0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz

0,00015 1/m

PROPRE À LA SONDE	Date et heure
(INERTIE)	lundi 2 mai 2022 14:08:53
e et heure	Nom de fichier
lundi 2 mai 2022 11:07:52	52140220502140853P
rateur	Controleur Pression Volume
OLIV	CPVA001
n de fichier	Annareil

Opérateur

OLIV

Pression hydrostatique 0,06 MPa

Pression différentielle 0,06 MPa

Observation

LECTURES SUR SITE							DOI	NNĚES	APRÉ	S CORRE	CTION			
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	ΔV ^{60/30}	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,059	0,061	0,062	0,066	11	43	77	109	60,0	-0,008	76,7	108,7	32,0	2 217,4
1	0,098	0,093	0,092	0,091	114	127	131	134	122,0	0,003	130,5	133,5	3,0	1 237,6
2	0,187	0,174	0,168	0,164	147	172	184	191	186,0	0,049	183,1	190,2	7,0	130,3
3	0,289	0,285	0,283	0,281	200	203	205	206	250,0	0,159	203,6	204,6	1,0	62,0
4	0,400	0,390	0,390	0,388	210	211	212	213	313,0	0,263	210,0	211,0	1,0	16,0
5	0,594	0,581	0,581	0,579	217	217	217	217	376,0	0,453	214,0	214,1	0,0	11,7
6	0,890	0,882	0,880	0,879	222	222	222	222	440,0	0,751	217,5	217,5	0,0	0,9
7	1,388	1,368	1,379	1,377	225	225	224	225	505,0	1,247	217,0	218,0	1,0	0,9
8	1,883	1,856	1,877	1,878	228	227	227	228	568,0	1,747	217,4	218,4	1,0	-4,0
9	2,880	2,809	2,831	2,824	231	227	228	229	632,0	2,693	213,6	214,6	1,0	

NIVEAUX Elevation (m) Zc -1 1 Zw Zn 0 0 -4.5 4.5 Depth

FORAGE

EMCI 4.5

Machine de forage

Méthode de forage

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_{t}

66 mm

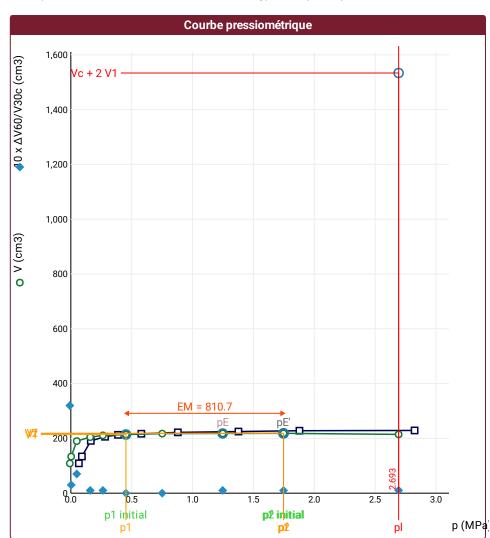
Base du tubage

Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier


GUILON GRANDE CRAIE

Nom du forage

SP2

Profondeur de l'essai (axe du forage) 4,5 m

- ⚠ Impossible de calculer pL inverse volume (Essai)
- ⚠ Impossible de calculer pL double hyperbole (Essai)
- ⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

Légende					
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :		
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	√ Résultats		
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés		
Pr ₁₅ /V ₁₅	✓ ∆V ^{60/30}	Extrapolation			
Pr ₁ /V ₁	1/V	courbe quadratique hyperbolique			
		Extrapolation			
		courbe double			
		hyperbole			

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,04 MPa		
P1 initial	0,45 MPa	V1	214 cm3
		i	
P1	0,45 MPa	V1	214 cm3
PΕ	1,25 MPa	VE	218 cm3
P2 initial	1,75 MPa	V2	218 cm3
		i	
<i>p</i> 2	1,75 MPa	<i>V</i> 2	218 cm3
Pf initial	1,75 MPa	Vf j	218 cm3
pf =	1,75 MPa	V_f	218 cm3
<i>pf*</i> =	1,71 MPa		
pL >	2,69 MPa	V_L	1534 cm3
pL* >	2,65 MPa		
EM	810,7 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
EM/pL<	301,054		
EM/pL*	305,65		
pL*/pf*	1,554		

DÉTERMINATION DE LA PRESSION LIMITE					
PL direct Méthode utilisée	Extrapolatio	ns invalides			
N 4 á tha a al a	A				
Méthode volumes	В				
inverses	Erreur moyenne				
	PLR				
Méthode quadratique	C				
	D				
hyperbolique	Erreur moyenne				
,	PLH				
	A1				
	A2				
Méthode	A3				
double	A4				
hyperbole	A5				
, μ 2σ	A6				
	Erreur moyenne				
	PLDH				

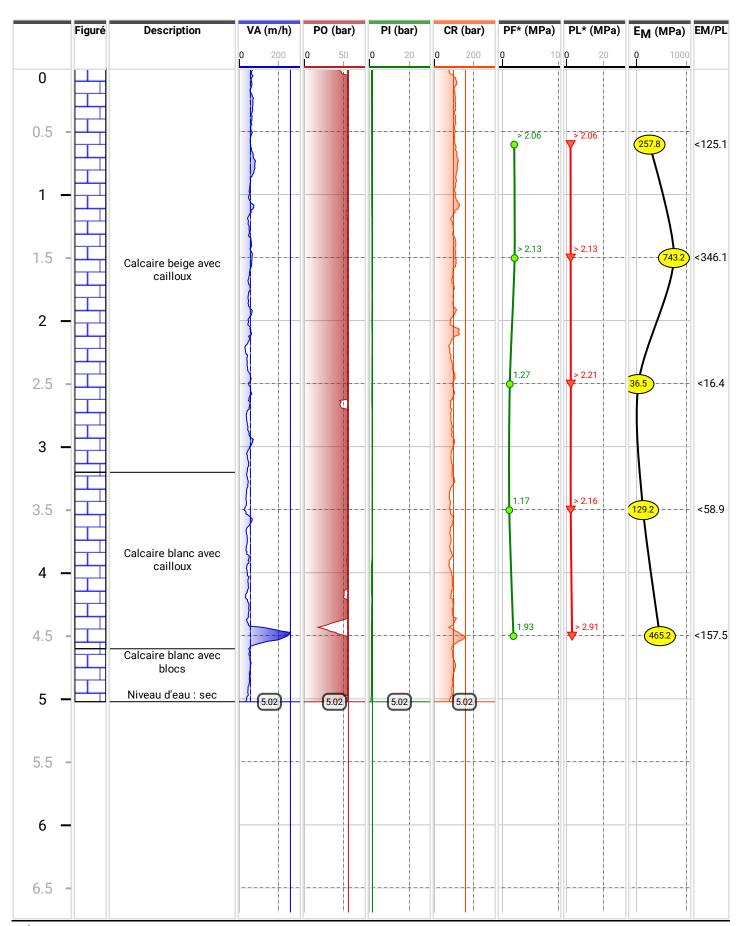
Paramètres de forage

Longueur

5.02 m

Cote début

0 m


Date de fin Cote fin 05/05/2022 5.02 m

Dossier

GUILON GRANDE CRAIE

Date de début

02/05/2022

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

Date et heure

Nom de fichier

Appareil

Opérateur

Observation

GUILON GRANDE CRAIE

Nom du forage

SP3

Profondeur de l'essai (axe du forage) 0,6 m

ESSAI

lundi 2 mai 2022 15:14:02

52140220502151401P

CPVA001

52140

OLIV

0,02 MPa

0,09 MPa

Controleur Pression Volume

Pression hydrostatique

Pression différentielle

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a

5,091 cm3/MPa

Date

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz

0,00015 1/m

SSAI DE RESISTANCE	
PROPRE À LA SONDE	
(INERTIE)	
et heure	

52140220502110752P

NIVEAUX Elevation (m)

Zc Zw	1) (-1
Zs -0.0	0.6 Depth

FORAGE

Machine de forage

Méthode de forage

EMCI 4.5

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

Passe de forage avant l'essai

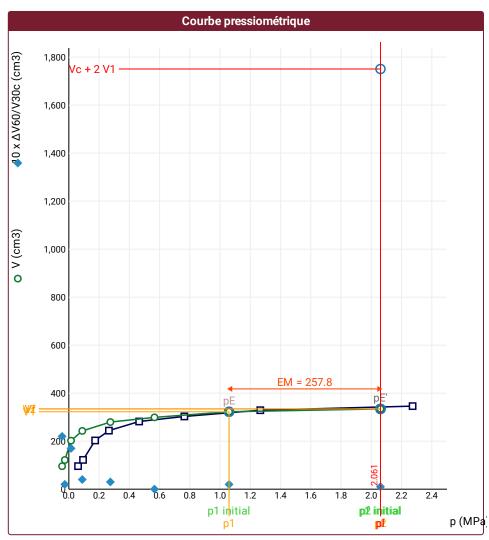
	LECTURES SUR SITE								DOI	NNÉES	APRÈ	S CORRE	CTION	
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	ΔV ^{60/30}	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,061	0,059	0,061	0,061	36	56	74	96	80,0	-0,044	73,7	95,7	22,0	1 446,4
1	0,104	0,095	0,093	0,094	101	115	120	122	141,0	-0,027	119,5	121,5	2,0	1 959,5
2	0,203	0,179	0,173	0,174	136	169	186	203	205,0	0,015	185,1	202,1	17,0	545,3
3	0,283	0,273	0,268	0,265	219	233	240	244	270,0	0,089	238,6	242,7	4,0	199,1
4	0,493	0,470	0,467	0,465	263	275	279	282	335,0	0,275	276,6	279,6	3,0	66,8
5	0,795	0,769	0,768	0,764	299	303	303	303	399,0	0,566	299,1	299,1	0,0	47,5
6	1,284	1,262	1,265	1,266	325	325	327	329	464,0	1,059	320,6	322,6	2,0	11,9
7	2,304	2,252	2,271	2,273	346	344	345	346	530,0	2,061	333,4	334,4	1,0	

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP3

Profondeur de l'essai (axe du forage) 0,6 m

 \triangle Impossible de calculer p $_{
m L}$ double hyperbole (Essai)

🛕 Impossible de déterminer la méthode double hyperbole (Inertie)

	Légende							
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :					
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	✓ Résultats					
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés					
Pr ₁₅ /V ₁₅	✓ ΔV ^{60/30}	Extrapolation						
Pr ₁ /V ₁		courbe quadratique hyperbolique						
_	_	Extrapolation						
		courbe double						
		hyperbole						

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,01 MPa		
P1 initial	1,06 MPa	V1	323 cm3
		i	
P1	1,06 MPa	V_{7}	323 cm3
PΕ	1,06 MPa	VE	323 cm3
P2 initial	2,06 MPa	<i>V</i> 2	334 cm3
		İ	
<i>p</i> 2	2,06 MPa	<i>V</i> 2	334 cm3
Pf initial	2,06 MPa	Vf i	334 cm3
pf >	2,06 MPa	V_f	334 cm3
<i>pf*</i> >	2,06 MPa		
pL >	2,06 MPa	V_L	1751 cm3
p <u>L</u> * >	2,06 MPa		
EM	257,79 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
E _M /p _L <	125,095		
EM/pL*	125,423		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE						
PL direct Méthode utilisée	Extrapolations invalides					
Méthode	A B	0 MPa 0 cm3				
volumes inverses	Erreur moyenne PLR	6 cm3 13,05 MPa				
Méthode quadratique hyperbolique	C D Erreur moyenne PLH					
Méthode double	A1 A2 A3 A4					
hyperbole	A5 A6 Erreur moyenne PLDH					

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP3

Profondeur de l'essai (axe du forage) 1,5 m

🛕 Impossible de déterminer la méthode double hyperbole (Inertie)

SONDE Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) $d_{\mathcal{C}}$

63 mm

Tube fendu

 $\overline{}$

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Palier pr1

0

1

2

3

4

5

6

7

8

MPa

Résistance propre de la membrane p_m 0,05 MPa

Pr15

MPa

0,062 0,062 0,062

0,101 0,092 0,093

0,183 0,169 0,165

0,301 0,286 0,279

0,392 0,378 0,378

0,604 0,576 0,575

0,908 0,875 0,879

1,380 1,368 1,366

2,392 2,333 2,330

Pr30

MPa

LECTURES SUR SITE

Pr60

MPa

0.066

0,092

0.158

0,275

0,377

0,568

0,879

1,371

2,350

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage d_i

66 mm

Volume initial conventionnel de la cellule centrale $V_{\mathcal{C}}$

1105 cm3

Coefficient d'étalonnage *a* 5,091 cm3/MPa

V1 V15 V30 V60 Temps

79 107

0.08

141,0

205.0

271,0

334,0

399,0

463,0

527,0

592,0

2,148

330,1 331,0

185

cm3 cm3 cm3 cm3

111 125 129 132

202 221 230 237

244 254 260 266

280 292 295 296

312 316 317 318

347 342 342 343

332 334

335 331

57

143 162 174

36

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde *pel*

0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz

0,00015 1/m

DONNÉES APRÈS CORRECTION								
p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$				
MPa	cm3	cm3	cm3	cm3/MPa				
-0,037	78,7	106,7	28,0	2 054,9				
-0,025	128,5	131,5	3,0	1 304,8				
0,015	173,2	184,2	11,0	539,8				
0,111	228,6	235,6	7,0	313,3				
0,202	258,1	264,1	6,0	161,1				
0,382	292,1	293,1	1,0	67,3				
0,685	312,5	313,5	1,0	27,7				
1,172	325,0	327,0	2,0	4,1				

0,9

ESSAI

Date et heure

lundi 2 mai 2022 15:25:35

Nom de fichier

52140220502152535P

Controleur Pression Volume

CPVA001

Appareil

52140

Opérateur

OLIV

Pression hydrostatique

0,03 MPa

Pression différentielle

0,08 MPa

Observation

Elevation (m) Zc 1 -1 Zw -- Zn 0 0 Depth

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

Base du tubage

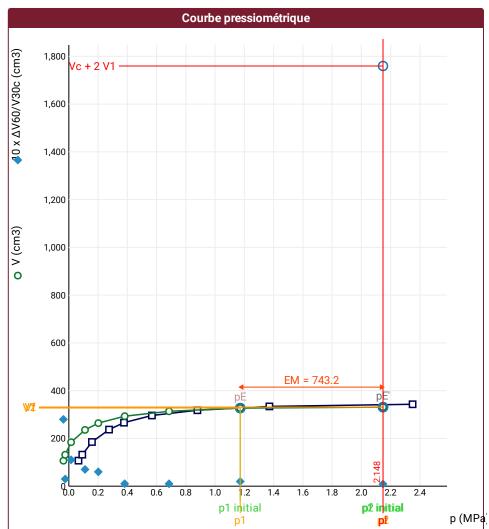
Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier

GUILON GRANDE CRAIE


Nom du forage

SP3

Profondeur de l'essai (axe du forage) 1,5 m

⚠ Impossible de calculer pL double hyperbole (Essai)

Légende							
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :				
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	√ Résultats				
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés				
Pr ₁₅ /V ₁₅	✓ ∆V ^{60/30}	Extrapolation courbe quadratique					
Pr ₁ /V ₁	1/V	hyperbolique					
		Extrapolation					
		courbe double					
		hyperbole					

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,01 MPa		
P1 initial	1,17 MPa	V_{7}	327 cm3
		i	
P1	1,17 MPa	V_{7}	327 cm3
PΕ	1,17 MPa	VE	327 cm3
P2 initial	2,15 MPa	<i>V</i> 2	331 cm3
		i	
<i>p</i> 2	2,15 MPa	<i>V</i> 2	331 cm3
Pf initial	2,15 MPa	Vf i	331 cm3
pf >	2,15 MPa	V_f	331 cm3
<i>pf*</i> >	2,13 MPa		
pL >	2,15 MPa	V_L	1760 cm3
pL* >	2,13 MPa		
EM	743,24 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
E _M /p _L <	346,052		
E _M /p _L *	348,241		
pL*/pf*	1		

DÉTERMINATION DE LA PRESSION LIMITE					
PL direct Méthode utilisée	Extrapolations invalides				
	Α	0 MPa			
Méthode volumes	В	0 cm3			
inverses	Erreur moyenne	3 cm3			
IIIVCIGCG	PLR	25,52 MPa			
Méthode	С				
quadratique	D				
hyperbolique	Erreur moyenne				
,po. soquo	PLH				
	A1				
	A2				
Méthode	A3				
double	A4				
hyperbole	A5				
7,	A6				
	Erreur moyenne				
	PLDH				

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP3

Profondeur de l'essai (axe du forage) 2,5 m

SONDE Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage dį

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a

5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde pel

0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz 0,00015 1/m

LECTURES SUR SITE								DOI	NNÉES	APRÈ:	S CORREC	CTION		
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	$\Delta V^{60/30}$	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,062	0,063	0,063	0,066	43	66	93	116	80,0	-0,032	92,7	115,7	23,0	2 130,6
1	0,105	0,100	0,097	0,094	120	136	141	144	141,0	-0,019	140,5	143,5	3,0	1 658,0
2	0,199	0,181	0,176	0,178	157	183	199	224	205,0	0,029	198,1	223,1	25,0	-244,2
3	0,408	0,383	0,376	0,000	244	262	269	271	270,0	-0,167	267,1	271,0	3,9	30,9
4	0,679	0,669	0,670	0,674	294	294	293	295	335,0	0,498	289,6	291,6	2,0	49,9
5	1,001	0,973	0,971	0,970	309	311	311	311	400,0	0,789	306,1	306,1	0,0	34,7
6	1,482	1,462	1,475	1,478	328	327	329	331	464,0	1,290	321,5	323,5	2,0	-1,9
7	2,474	2,426	2,420	2,417	342	335	335	334	531,0	2,228	322,7	321,7	-1,0	

ESSAI

Date et heure

lundi 2 mai 2022 15:37:51

Nom de fichier

52140220502153751P

Controleur Pression Volume

CPVA001

Appareil

52140

Opérateur

OLIV

Pression hydrostatique

0,04 MPa

Pression différentielle

0,07 MPa

Observation

NIVEAUX Elevation (m) Zc 1 -1 Zw Zn 0 0 -2.5 2.5 Depth

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage

Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

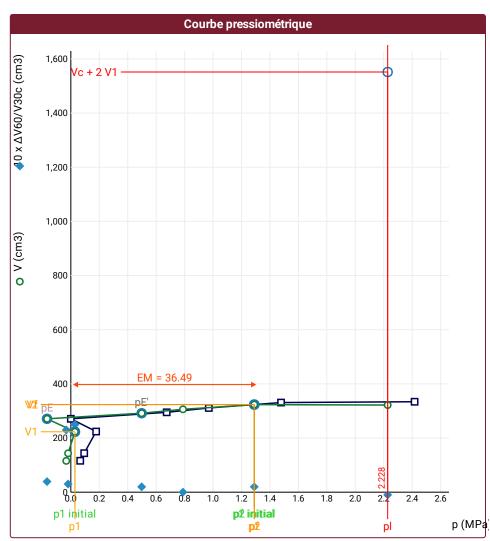
Base du tubage

Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier


GUILON GRANDE CRAIE

Nom du forage

SP3

Profondeur de l'essai (axe du forage) 2,5 m

- ⚠ Impossible de calculer pL quadratique hyperbolique (Essai)
- ⚠ Impossible de calculer pL double hyperbole (Essai)
- ⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

Légende							
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :				
✓ Pr ₆₀ /V ₆₀	\square Pe(Vr)	Extrapolation	√ Résultats				
Pr ₃₀ /V ₃₀	√ P/V	courbe inverse	normatifs calculés				
Pr ₁₅ /V ₁₅	✓ ∆V ^{60/30}	Extrapolation					
☐ Pr ₁ /V ₁	☐ 1/V	courbe quadratique hyperbolique					
		Extrapolation					
		courbe double					
		hyperbole					

RÉSULTA	TS NORMA	TIFS	CALCULÉS
σhs	0,02 MPa		
P1 initial	0,03 MPa	V_{7}	223 cm3
		i	
P1	0,03 MPa	V_{7}	223 cm3
PΕ	-0,17 MPa	VE	271 cm3
P2 initial	1,29 MPa	<i>V</i> 2	323 cm3
		i	
p2	1,29 MPa	V2	323 cm3
Pf initial	1,29 MPa	Vf j	323 cm3
pf =	1,29 MPa	V_f	323 cm3
<i>pf*</i> =	1,27 MPa		
pL >	2,23 MPa	V_L	1552 cm3
p _L * >	2,21 MPa		
EM	36,49 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
EM/pL<	16,378		
EM/pL*	16,545		
pL*/pf*	1,74		

PL"/PT>	1,74					
DÉTERMINATION DE LA PRESSION LIMITE						
PL direct						
Méthode utilisée	Extrapolations invalides					
N A 5411 -	А	0 MPa				
Méthode volumes	В	0 cm3				
inverses	Erreur moyenne	13 cm3				
111701303	PLR	28,19 MPa				
Méthode	С					
quadratique	D					
hyperbolique	Erreur moyenne					
nyper bonque	PLH					
	A1	50024				
	A2	157,19				
NAZIL I	A3	0				
Méthode double	A4	-17463000				
hyperbole	A5	0				
, per bore	A6	350,51				
	Erreur moyenne	10 cm3				
	PLDH					

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

Date et heure

GUILON GRANDE CRAIE

Nom du forage

SP3

ESSAI

lundi 2 mai 2022 15:49:27

Profondeur de l'essai (axe du forage) 3,5 m

SONDE Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

 \square

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde pel 0,32 MPa

TUBULURE

Type tubulure

Coaxiale

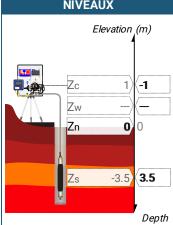
Tubulure longueur totale 25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz 0,00015 1/m

Observation	
	NIVEAUX
	Elevation
	Zc 1) Zw Zn 0 Zs -3.5


	LECTURES SUR SITE									DONNÉES APRÈS CORRECTION				
Palie	r <i>p_{r1}</i>	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	ΔV ^{60/30}	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,061	0,062	0,064	0,065	48	76	105	124	80,0	-0,028	104,7	123,7	19,0	1 759,7
1	0,097	0,092	0,090	0,090	126	139	144	147	141,0	-0,015	143,5	146,5	3,0	1 751,3
2	0,200	0,184	0,176	0,176	164	191	209	232	206,0	0,034	208,1	231,1	23,0	342,4
3	0,287	0,280	0,276	0,277	246	255	259	263	272,0	0,123	257,6	261,6	4,0	342,4
4	0,412	0,392	0,389	0,387	277	292	296	297	340,0	0,220	294,0	295,0	1,0	90,7
5	0,587	0,573	0,573	0,570	311	313	313	314	404,0	0,397	310,1	311,1	1,0	41,5
6	0,899	0,878	0,876	0,875	328	328	328	328	469,0	0,698	323,5	323,5	0,0	12,8
7	1,377	1,376	1,375	1,381	339	337	337	337	535,0	1,201	330,0	330,0	0,0	-0,1
8	2,412	2,353	2,373	2,375	345	340	342	342	602,0	2,193	329,9	329,9	0,0	

Nom de fichier 52140220502154927P Controleur Pression Volume CPVA001 Appareil 52140 Opérateur OLIV Pression hydrostatique

0,05 MPa

0,07 MPa

Pression différentielle

EMCI 4.5 Méthode de forage Fluide de forage Outil de forage Tricône Diamètre de l'outil de forage d_{t} 66 mm Base du tubage Passe de forage avant l'essai

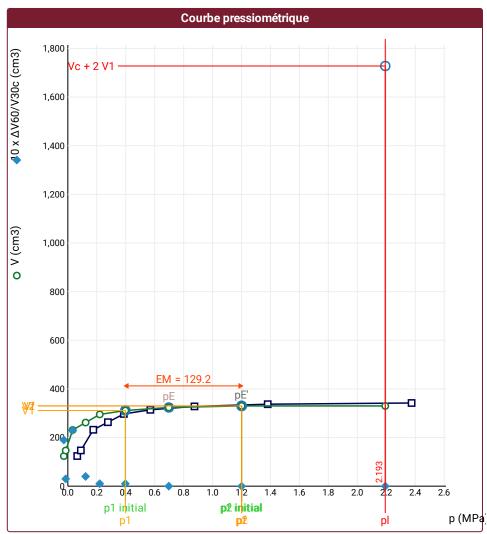
FORAGE

Machine de forage

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier


GUILON GRANDE CRAIE

Nom du forage

SP3

Profondeur de l'essai (axe du forage) 3,5 m

🛕 Impossible de déterminer la méthode double hyperbole (Inertie)

Légende									
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :						
Pr ₆₀ /V ₆₀	\square P _e (V _r)	Extrapolation courbe inverse	Résultats normatifs calculés						
Pr ₁₅ /V ₁₅	✓ ΔV ^{60/30}	Extrapolation courbe quadratique							
Pr ₁ /V ₁	1/V	hyperbolique							
		Extrapolation courbe double hyperbole							

RESULTA	ATS NORMA	TIFS	CALCULES
σhs	0,03 MPa		
P1 initial	0,4 MPa	V_{7}	311 cm3
		i	
P1	0,4 MPa	V_{7}	311 cm3
PΕ	0,7 MPa	VE	324 cm3
P2 initial	1,2 MPa	<i>V</i> 2	330 cm3
		i	
<i>p</i> 2	1,2 MPa	<i>V</i> 2	330 cm3
Pf initial	1,2 MPa	V_{fi}	330 cm3
pf =	1,2 MPa	V_f	330 cm3
pf* =	1,17 MPa		
pL >	2,19 MPa	V_L	1728 cm3
p _L * >	2,16 MPa		
EM	129,18 MPa	Méth	ode de calcul
		de <i>E</i> /	М
		Т	ube fendu
EM/pL<	58,902		
EM/pL*	59,76		
pL*/pf*	1,849		

DÉTERMINATION DE LA PRESSION LIMITE							
PL direct							
Méthode utilisée	Extrapolatio	ns invalides					
Mari	Α	0 MPa					
Méthode volumes	В	0 cm3					
inverses	Erreur moyenne	2 cm3					
111701303	PLR	73,61 MPa					
Méthode	С						
quadratique	D						
hyperbolique	Erreur moyenne						
nyperbonque	PLH						
	A1	-4918,5					
	A2	-6,563					
NA SAID DE LA	A3	183,81					
Méthode double	A4	4770400					
hyperbole	A5	-1,064					
Пурствоїс	A ₆	905,24					
	Erreur moyenne	0 cm3					
	PLDH	38,53 MPa					

ESSAI AU PRESSIOMÈTRE MÉNARD

ESSAI EN PLACE - DONNÉES D'ESSAI

Conformément à l'ISO 22476-4 Procédure B

Référence dossier

GUILON GRANDE CRAIE

Nom du forage

SP3

Profondeur de l'essai (axe du forage) 4,5 m

⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

LECTURES SUR SITE

SONDE

Nom de la sonde

Longueur de la cellule centrale I_C

370 mm

Diamètre extérieur de la cellule centrale (y compris le tube fendu) d_C

63 mm

Tube fendu

Gaine

Caoutchouc

MEMBRANE

Type de membrane

Résistance propre de la membrane p_m 0,05 MPa

ESSAI DE DILATATION PROPRE À L'APPAREILLAGE (CALIBRAGE)

Date et heure

lundi 2 mai 2022 10:31:51

Opérateur

OLIV

Nom de fichier

52140220502103151P

Diamètre intérieur du tube de calibrage

66 mm

Volume initial conventionnel de la cellule centrale V_C

1105 cm3

Coefficient d'étalonnage a 5,091 cm3/MPa

ESSAI DE RÉSISTANCE PROPRE À LA SONDE (INERTIE)

Date et heure

lundi 2 mai 2022 11:07:52

Opérateur

OLIV

Nom de fichier

52140220502110752P

Résistance propre de la sonde pel 0,32 MPa

TUBULURE

Type tubulure

Coaxiale

Tubulure longueur totale

25 m

FLUIDES

Poids volumique du liquide 10 kN/m3

Compressibilité du gaz

	0,00015 1/m
DONN	IÉES APRÈS CORRECTION

ELOTORES SOR SITE									DOMNELS AT ILES CORRECTION					
Palier	Pr1	Pr15	Pr30	Pr60	V ₁	V ₁₅	V30	V ₆₀	Temps	p	V30c	V	ΔV ^{60/30}	$\Delta V^{60/60}/\Delta P$
	MPa	MPa	MPa	MPa	cm3	cm3	cm3	cm3	S	MPa	cm3	cm3	cm3	cm3/MPa
0	0,061	0,062	0,064	0,067	53	84	115	130	80,0	-0,019	114,7	129,7	15,0	2 643,5
1	0,100	0,093	0,093	0,090	134	147	153	156	141,0	-0,009	152,5	155,5	3,0	2 127,4
2	0,200	0,180	0,179	0,176	173	203	225	252	206,0	0,036	224,1	251,1	27,0	410,7
3	0,301	0,287	0,286	0,284	266	285	290	291	270,0	0,130	288,5	289,6	1,0	111,4
4	0,410	0,400	0,402	0,400	301	304	304	304	340,0	0,241	302,0	302,0	0,0	50,4
5	0,688	0,675	0,675	0,675	320	319	319	319	405,0	0,511	315,6	315,6	0,0	18,7
6	1,196	1,167	1,176	1,182	333	330	330	331	469,0	1,014	324,0	325,0	1,0	0,1
7	2,184	2,145	2,143	2,142	340	336	336	336	535,0	1,972	325,1	325,1	0,0	-2,0
8	3,187	3,113	3,111	3,125	344	338	337	339	601,0	2,954	321,2	323,1	1,9	

ESSAI

Date et heure

lundi 2 mai 2022 16:02:01

Nom de fichier

52140220502160201P

Controleur Pression Volume

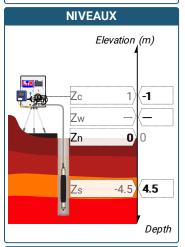
CPVA001

Appareil

52140

Opérateur

OLIV


Pression hydrostatique

0,06 MPa

Pression différentielle

0,07 MPa

Observation

FORAGE

Machine de forage

EMCI 4.5

Méthode de forage Fluide de forage

Outil de forage

Tricône

Diamètre de l'outil de forage d_t

66 mm

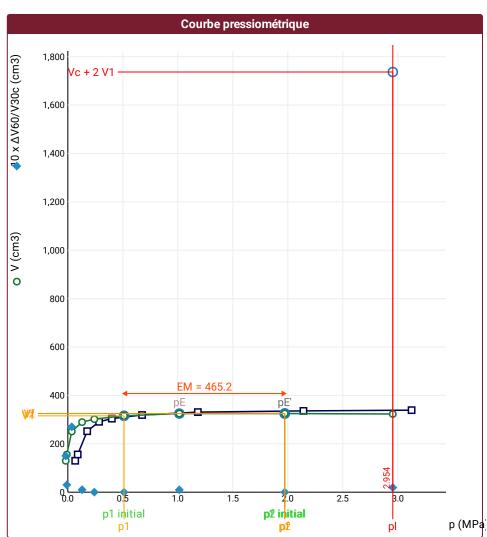
Base du tubage

Passe de forage avant l'essai

Client

ESSAI EN PLACE - RÉSULTATS ET INTERPRÉTATION

Conformément à l'ISO 22476-4 Procédure B Référence dossier


GUILON GRANDE CRAIE

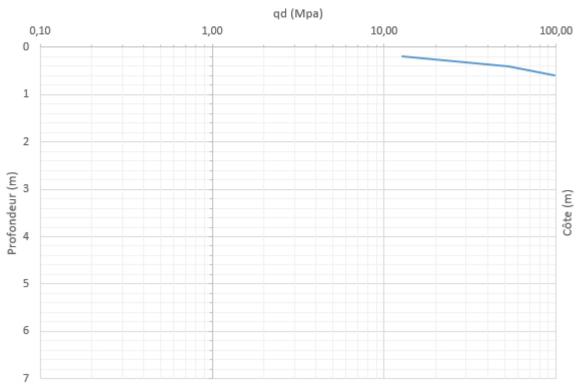
Nom du forage

SP3

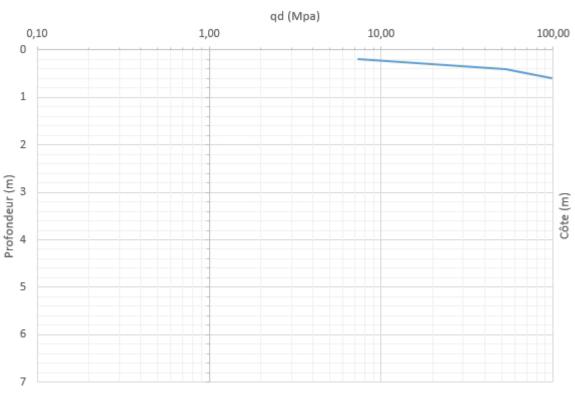
Profondeur de l'essai (axe du forage) 4,5 m

- ⚠ Impossible de calculer pL inverse volume (Essai)
- ⚠ Impossible de calculer pL double hyperbole (Essai)
- ⚠ Impossible de déterminer la méthode double hyperbole (Inertie)

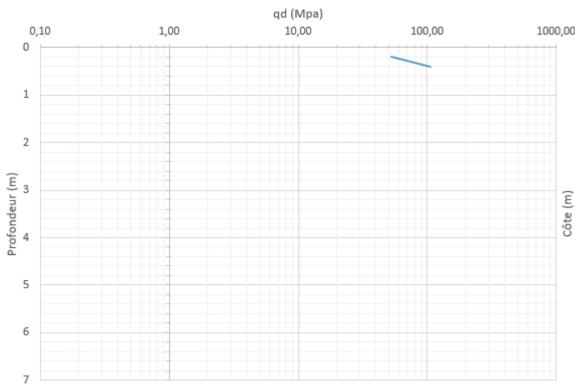
Légende										
Courbes brutes :	Courbes corrigées :	Courbes extrapolées :	Résultats :							
✓ Pr ₆₀ /V ₆₀	\square Pe(V _r)	Extrapolation	√ Résultats							
Pr ₃₀ /V ₃₀	P/V	courbe inverse	normatifs calculés							
Pr ₁₅ /V ₁₅	\checkmark $\Delta V^{60/30}$	Extrapolation courbe quadratique								
Pr ₁ /V ₁	1/V	hyperbolique								
		Extrapolation								
		courbe double								
		hyperbole								

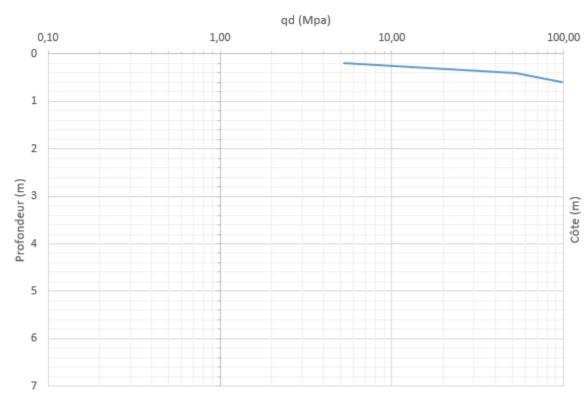

RESULTA	ATS NORMA	TIFS	CALCULES
σhs	0,04 MPa		
P1 initial	0,51 MPa	V1	316 cm3
		i	
<i>p</i> 1	0,51 MPa	V_{7}	316 cm3
PΕ	1,01 MPa	V_E	325 cm3
P2 initial	1,97 MPa	<i>V</i> 2	325 cm3
		i	
p ₂	1,97 MPa	<i>V</i> 2	325 cm3
Pf initial	1,97 MPa	V_{fi}	325 cm3
pf =	1,97 MPa	V_f	325 cm3
pf* =	1,93 MPa		
pL >	2,95 MPa	V_L	1737 cm3
p <u>L</u> * >	2,91 MPa		
EM	465,18 MPa	Méth	ode de calcul
		de <i>E</i>	М
		Т	ube fendu
EM/pL<	157,471		
EM/pL*	159,66		
pL*/pf*	1,508		

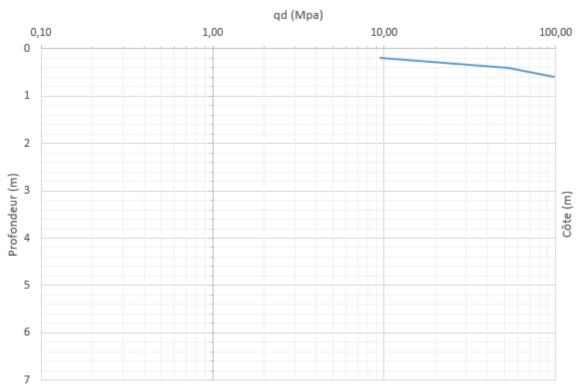
FL / F1								
DÉTERMINATION DE LA PRESSION LIMITE								
PL direct								
Méthode utilisée	Extrapolatio	ns invalides						
Méthode	Α							
volumes	В							
inverses	Erreur moyenne							
	PLR							
Méthode	С							
quadratique	D							
hyperbolique	Erreur moyenne							
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PLH							
	A1							
	A2							
Méthode	A3							
double	A4							
hyperbole	A5							
,	A6							
	Erreur moyenne							
	PLDH							

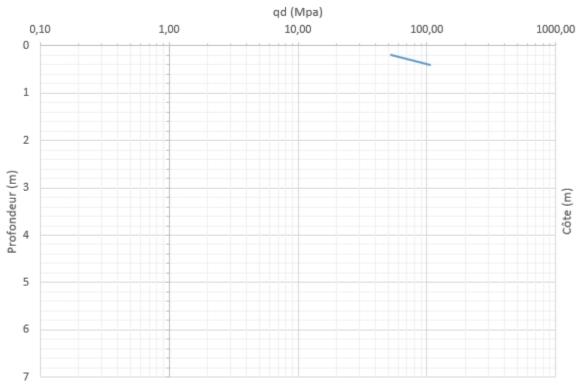


Annexe III : Bordereaux des sondages pénétrométriques


Essai sur site : D1


Essai sur site : D2


Essai sur site : D3


Essai sur site : D4

Essai sur site : D5

Essai sur site : D6

Essai sur site: D7

Annexe IV : **Résultats des essais en laboratoire**

BE_GES 03a-V10

RAPPORT D'ESSAIS

Lab22106

Date de création : 18/05/2022 Date de mise-à-jour : 19/05/2022

Laboratoire d'essais géomécaniques

Nom et adresse du client

EDF RENOUVELABLES

COEUR DEFENSE - TOUR B 100 ESPLANADE DU GENERAL DE GAULLE 92932 PARIS LA DEFENSE

Site Grande Craie à Guillon (89) - Parc photovoltaïque

BOUP220063

Antea Group OLIVET - A. KABORE

auguste.kabore@anteagroup.fr

Date de réception	Echantillons réceptionnés
06/05/2022	2 échantillons en vrac en sac plastique.

Sommaire du rapport

- 1 tableau de résultats d'essais en laboratoire.
- 4 pages d'annexes dont :

Bordereau d'essais d'identification de sol (1 page).

Bordereau d'essai au bleu de méthylène (1 page).

Bordereau de classification GTR (1 page).

Bordereau d'essai d'Indice Portant Immédiat (1 page).

Les résultats exprimés ne concernent que les échantillons soumis à essais.

Sauf accord écrit préalable, le présent rapport ne peut être reproduit que dans son intégralité.

Sauf demande expresse du donneur d'ordre, les échantillons ne sont pas conservés au delà de deux mois après l'envoi du rapport.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec les échantillons définis ci-dessus, mais que la portée et les conclusions à tirer de ces résultats font l'objet d'un document séparé ou n'ont pas été demandés par le donneur d'ordre.

Entre l'ab22106 - BE_GES-03_Lab22106_BOUP220063 xls

Contact pour le suivi des essais

Le responsable des essais

Le responsable technique

C. POINCLOU

E. ANTOINET

Contact pour le suivi des essais

A. PITHON

Synthèse des Résultats d'Essais

N° Rapport: Lab22106

Date de Mise-à-jour : 18/05/2022

N°Projet: BOUP220063 Unité: OLIVET

Projet : Site Grande Craie à Guillon (89) - Parc photovoltaïque Chef de Projet : A. KABORE

Client: LUXEL

	Code	S 102		S 1	.11		S 114	S 204	,	
	Intitulé	Teneur en eau pondérale NF P94-050		Analyse granulométrique	NF P94-056		Essai au bleu de méthylène NF P94-068	Teneur en eau pondérale du moulage NF P94-050	Indice Portant Immédiat (sur matériau naturel) NF P94-078	Classification GTR NF P11-300
	Symbole	W_n	D_{max}	<50mm	<2mm	<80μm	VBS	W_n	IPI	GTR
Référence de l'échantillon / description visuel	Unité	(%)	(mm)	(%)	(%)	(%)	(%)	(%)		
F8 de 0.00 à 0.20 m										
Grave sablo-silteuse carbonatée lâche, marron.		6.2	54	94.0	31.1	15.6	0.3	6.2	15.8	C ₁ B ₅ m
Présence d'éléments racinaires.										

Fichier: Lab22106 - Synthèse des Essais - Client.xls

Essais d'Identification des Sols

NF P94-050 NF P94-53 NF P94-54

Etat : Vrac

NF P94-410-3 Date: 11/05/2022

Projet : Site Grande Craie à Guillon (89) - Parc photovoltaïque N° de projet : BOUP220063 Sondage : cf. ci-dessous Client: LUXEL N° d'échantillon : cf. ci-dessous Date de prélèv. : 05/05/2022 Date de réception : 06/05/2022

Profondeur: cf. ci-dessous N° d'archivage : 22_0777

Nature : cf. tableau de synthèse des essais

Observation:

Mesure de la teneur en eau W (%) - NF P94-050 (sol) ou NF P94-410-1 (roche)

Référence de l'échantillon	Etuvage 50/105 (°C)	P s (Mg/m³)	M _{humide + tare} (g)	M _{sèche + tare} (g)	M _{tare}	M _{sèche} (g)
F8 de 0.00 à 0.20 m	50	2.65	3720.40	3545.50	722.36	2823.14

(%) 6.2

Mesure des masses volumiques (Mg/m3) - NF P94-053 (à la trousse coupante §6.1 et au moule §6.2 - sol) ou NF P94-410-2 (roche)

					V _V /V _{grains}	$W/(1/\rho_{d}-1/\rho_{s})$			e/(1+e)
Référence de l'échantillon	M _{humide} (g)	M _{trousse} (g)	D (cm)	H (cm)	e (1)	Sr (%)	ρ _h (Mg/m³)	ρ _d (Mg/m³)	n _t (porosité)

Mesure des masses volumiques (Mg/m3) - NF P94-053 (par immersion dans l'eau §6.3 - sol) ou P94-512-2 (méthode par déplacement d'un fuilde §5.3) ou NF P94-410-2 (roche)

						$W/(1/\rho_{d}-1/\rho_{s})$			
Référence de l'échantillon	M _{épr. sèche} (g)	M _{epr + para} ou M_{tare} (g)	M _{immergée} ou M_{tare + eau} (g)	V _{échantilon} (cm ³)	Temp.	Sr (%)	ρ _h (Mg/m³)	W (%)	P _d (Mg/m ³)

Mesure de la masse volumique absolue (Mg/m³) - NF P94-054 (au pycnomètre)

Référence de l'échantillon	M _{pycnomètre} (g)	M _{pycno+eau} (g)	T1 (°C)	V _{pycnomètre} (cm ³)	M _{pycno+echan} (g)	M _{pycn+ech+eau} (g)	T2 (°C)	V _{échantillon} (cm³)	ρ _S (Mg/m³)

Mesure de la porosité connectée - NF P94-410-3 (§7.2)

Référence de l'échantillon	Etuvage 50/105 (°C)	M _{sèche} (g)	M _{saturée} (g)	M _{immergée} (g)	W _{Sat} (%)	ρ _d (Mg/m³)	ρ _S (Mg/m³)	ρ _{Sat} (Mg/m³)	n _c (porosité) (1)

	Opérateur	Contrôleur
	M. TONDEUX	C. POINCLOU
# 11		

BE_IDE-05-V2

Valeur au Bleu de Méthylène

Essai à la tache

NF P94-068

Date: 11/05/2022

Projet: Site Grande Craie à Guillon (89)
Sondage: cf. ci-dessous
N° d'échantillon: cf. ci-dessous
Profondeur: cf. ci-dessous
N° d'archivage: 22_0777

Nature : cf. ci-dessous

Observation:

N° de projet : BOUP220063

Client : LUXEL

Date de prélèv. : 05/05/2022

Date de réception : 06/05/2022

Etat : Vrac

Mesure de la teneur en eau W (%) - NF94-050

Référence de l'échantillon	Etuvage 50/105 (°C)	M _{humide+tare} (g)	M _{totale sèche}	M _{tare}
F8 de 0.00 à 0.20 m	50	3720.40	3545.50	722.36

W (%)
6.2

Valeur au Bleu de Méthylène (Essai à la tache) - NF P94-068

Référence de l'échantillon	M _{humide} (g)	V _{bleu} introduit Solution à 10 g/L (CC)	Tamisat à 5 mm (%)	Description
F8 de 0.00 à 0.20 m	87.00	60	38.8	Grave sablo-silteuse carbonatée lâche, marron. Présence d'éléments racinaires.

VBS (gramme de bleu pour 100 g de matériaux sec)
0.3

			Opérateur	Contrôleur
			M. TONDEUX	C. POINCLOU
fichier :	Lab22106 -	BE IDE-05 VBS BOUP220063 (1).xls		

antea group

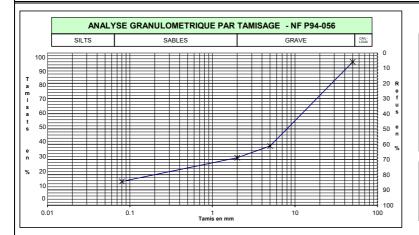
Classification GTR

NF P11-300

Date: 18/05/2022

Projet: Site Grande Craie à Guillon (89)

Sondage: F8 N° d'échantillon :

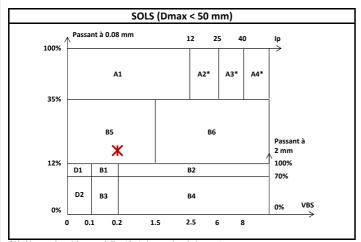

Profondeur: de 0.00 à 0.20 m

N° d'archivage : 22_0777

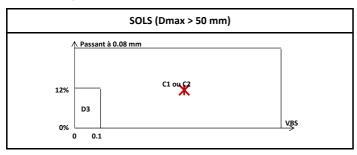
Date de prélèv. : 05/05/2022 Date de réception: 06/05/2022 Etat : Vrac

Nature : Grave sablo-silteuse carbonatée lâche, marron. Présence d'éléments racinaires.

Observation:


Paramètres de Nature

N° de projet : BOUP220063


Client: LUXEL

Granularité								
	Dm a	54						
	Fraction 0	94.0						
NF P94056		50	94.0					
	Passant	5	38.8					
	Fraction 0/50 (%)	2	31.1					
	(, -)	0.08	15.6					

Argilosité					
NF P94-068	Valeur de bleu	VBS	0.3		
NF P94-008	de méthylène	(g/100g)	0.5		
NF P94-051	Indice de	IP			
NF P94-051	plasticité	(%)			

* Matériaux pour lesquels la mesure de l'Ip est à retenir comme base de classement Pour les autres matériaux, la VBS sera retenue.

Paramètres d'Etat

NF P94-050	Teneur en eau	W (%)	6.2
NF P94-053	Masse Volumique	ρ _d (Mg/m³)	
NF P94-051	Indice de consistance	lc (-)	
NF P94-093	Optimum Proctor	W _{OPN} (%)	
NF P94-074	Indice de Portance Immédiat	IPI (-)	15.8

Paramètres de Comportement Mécanique

	ESSAIS SUR SOL ET ROCHE				
NE EN1007.2	Las Ausslas	L _A			
NF EN1097-2	Los Angeles	(%)			
NE EN1007 1	Micro Deval	M _{DE}			
NF EN1097-1	iviicro Devai	(%)			
P18-576	Friabilité des	Fs			
P18-576	sables	(%)			
		ESV			
NF EN933-8	Equivalent de	(-)			
NF EN933-8	sable	ESP			
		(-)			
	ESSAIS SUR	ROCHE			
	Coefficient de	FR			
NF P94-066	Fragmentabilité	(-)			
		(7			
NF P94-067	Coefficient de	DG			
141 1 34-007	Dégradabilité	(-)			

CLASSE DU SOL					
NF P11-300	NF P11-300 Classification GTR 92 Argiles à silex, argiles à meulière, éboulis, moraines, alluvions grossières C1 B5m				

		Opérateur	Contrôleur
		A. PITHON	C. POINCLOU
fichier :	fichier: Lab22106 - BE_IDE-08_BOUP220063_22_0777_F8_de 0.00 à 0.20 m.xls		

BE_TER-02-V4

Indice Portant Immédiat (IPI)

Mode opératoire n° LMO014 Norme NF P 94-078

Laboratoire d'essais géomécaniques Date : 06/05/2022

Projet: Site Grande Craie à Guillon (89) - Parc photovoltaïque **N° de projet**: BOUP220063

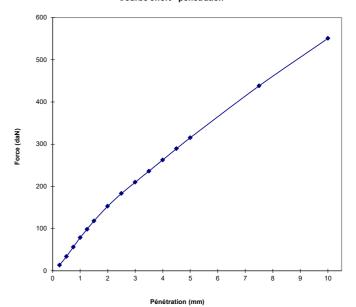
 Sondage: F8
 Client: LUXEL

 N° d'échantillon:
 Date de prélèv. : 05/05/2022

 Profondeur: de 0.00 à 0.20 m
 Date de réception : 06/05/2022

 \mbox{N}° d'archivage : 22_0777 Etat : Vrac Nature : Grave sablo-silteuse carbonatée lâche, marron. Présence d'éléments racinaires.

Observation:


Type d'essai	
Indice Californian Bearing Ratio (CBR) après immersion	
Indice CBR immédiat	
Indice Portant Immédiat (IPI)	Х

Type de compactage			
PROCTOR NORMAL	Χ		
PROCTOR MODIFIÉ			

ρd du compactage: 1.78 (g/cm3)	soit :	de	ρd _{OPN} =	(*)	(g/cm3)	(*): Valeur non déterminée
W du compactage : 6.2 (%)	soit:	de	$W_{OPN} =$	(*)	(%)	
Presse : I CC007 de 20kN						

Courbe effort - pénétration

Enfoncement (mm)	Force (daN)
0.25	14
0.50	34
0.75	56
1.00	79
1.25	99
1.50	118
2.00	153
2.50	183
3.00	210
3.50	236
4.00	263
4.50	290
5.00	316
7.50	438
10.00	551

OBSERVATIONS

La détermination des teneurs en eau est réalisée suivant la norme NF P 94-050.

Indice recherché				
F(2,5) / 13,35 =	13.73			
F(5,0) / 19,93 = 15.83				
Indice IPI :	15.8			

Pour I. CBR immersion

∆h (cm) =

G (%) = Δh/h moule =

w après immersion =

		Opérateur	Contrôleur
		P. CHOPART / M. TONDEUX	C. POINCLOU
fichier :	Lab22106 - BE TER-02 BOUP220063 22 0777 F8 de 0.00 à 0.20	m.xls	

Annexe V : Bordereaux des fouilles à la pelle mécanique

FICHE DE REALISATION FOUILLE GEOLOGIQUE

N° station

F7

Agence : Implantation Olivet

803 Boulevard Duhamel du Monceau

45166 OLIVET CEDEX

Tél: 02.38.23.22.20 *Fax*: 02.38.23.22.30

Responsable du projet : Maxime MARTHE

Responsable d'activités Infrastructures <u>Informations sur projet</u>:

N°: BOUP220063

Projet : Mission d'Ingénierie géotechnique G2 AVP_Parc Photovoltaïque site Grande

Craie à Guillon (89) – Emprise de 5 Ha

Adresse: Guillon-Terre-Plaine (89)

<u>Informations sur travaux</u>:

Date: 5 mai 2022

Météo : Ensoleillée avec des passages nuageux

Outil: Pelle mécanique
Suivi: Auguste KABORE
Localisation Guillon-Terre-Plaine (89)

	Estansation Camer Ferre Flame (es)					
Profondeur		Description		Analyses Laboratoire		
Terrain actuel 0,25	•	le nature sablo limoneuse/silteuse, à plusieurs blocs calcaires et cailloux centimétriques à pluricentimétriques. Présence de débris de végétaux.		Analyse Corrosion+Agressivité		
0,25 Réfus	Blocs o	calcaires durs de couleur bland	che orangée. Réfus à 0,25 m/TA			
Photos	Fouilla :		Matáriaux overvás			

Niveau d'eau	Aucune venue d'eau
Stabilité paroi	Bonne
Topographie du site	relativement plat

FICHE DE REALISATION FOUILLE GEOLOGIQUE

N° station

F7-bis

Agence: Implantation Olivet

803 Boulevard Duhamel du Monceau

45166 OLIVET CEDEX

Tél: 02.38.23.22.20 *Fax*: 02.38.23.22.30

Responsable du projet : Maxime MARTHE

Responsable d'activités Infrastructures <u>Informations sur projet</u>:

N°: BOUP220063

Projet : Mission d'Ingénierie géotechnique G2 AVP_Parc Photovoltaïque site Grande

Craie à Guillon (89) – Emprise de 5 Ha

Adresse: Guillon-Terre-Plaine (89)

Informations sur travaux:

Date: 5 mai 2022

Météo : Ensoleillée avec des passages nuageux

Outil: Pelle mécanique
Suivi: Auguste KABORE
Localisation Guillon-Terre-Plaine (89)

		Localisation dalilon ferre Flame (03)	
Profondeur	Descrip	otion	Analyses Laboratoire
Terrain actuel 0,1	Blocs calcaires durs de couleur be	ige orangée. Réfus à 0,10 m/TA	
Photos			

Fouille : Matériaux excavés :

Niveau d'eau	Aucune venue d'eau
Stabilité paroi	Bonne
Topographie du site	relativement plat

FICHE DE REALISATION FOUILLE GEOLOGIQUE

N° station

F8

Agence: Implantation Olivet

803 Boulevard Duhamel du Monceau

45166 OLIVET CEDEX

Tél: 02.38.23.22.20 *Fax*: 02.38.23.22.30

Responsable du projet : Maxime MARTHE

Responsable d'activités

Infrastructures

Informations sur projet :

N°: BOUP220063

Projet : Mission d'Ingénierie géotechnique G2 AVP_Parc Photovoltaïque site Grande

Craie à Guillon (89) – Emprise de 5 Ha

Adresse: Guillon-Terre-Plaine (89)

<u>Informations sur travaux</u>:

Date: 5 mai 2022

Météo : Ensoleillée avec des passages nuageux

Outil: Pelle mécanique Suivi: Auguste KABORE

Localisation Guillon-Terre-Plaine (89)

	1000	msation dumon-refre-riame (05)	
Profondeur	Description		Analyses Laboratoire
Terrain actuel 0,2	Terre végétale de nature sablo limoneuse/silteuse, à blocs	calcaires et présence de débris de végétaux	GTR/Analyse Corrosion+Agressivité / IPI
0,2 Réfus	Blocs calcaires durs de couleur blanche o	rangée. Réfus à 0,20 m/TA	
Photos	Favilla .	A double of the control of the contr	

Fouille: Matériaux excavés:

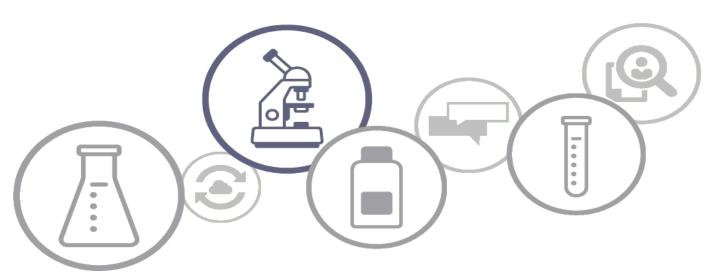
Niveau d'eau	Aucune venue d'eau
Stabilité paroi	Bonne
Topographie du site	relativement plat

Annexe VI: Résultats des analyses de corrosion des aciers par les sols et d'agressivité des sols sur les bétons

Accréditation n°1-1364 Portée disponible sur www.cofrac.fr

WESSLING France S.A.R.L. Z.I. de Chesnes Tharabie · 40 rue du Ruisseau BP 50705 · 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56 $labo@wessling.fr \cdot www.wessling.fr \\$

WESSLING France S.A.R.L, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex


ANTEA GROUP - Direction administrative et financiere Monsieur Auguste KABORE ZAC du Moulin 803 boulevard Duhamel du Monceau - CS30602 45166 OLIVET Cedex 2

ULY22-013219-1 N° rapport d'essai ULY-10643-22 N° commande Interlocuteur (interne) Y. Lafond Téléphone +33 474 990 554 Courrier électronique y.lafond@wessling.fr

Date 13.06.2022

Rapport d'essai

BOUP220063

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai et tels qu'ils ont été reçus. Les résultats des paramètres couverts par l'accréditation EN ISO/CEI 17025 sont marqués d'un (A).

La portée d'accréditation COFRAC n°1-1364 essais du laboratoire WESSLING de Lyon (St Quentin Fallavier) est disponible sur le site www.cofrac.fr pour les résultats accrédités par ce laboratoire.

Le COFRAC est signataire des accords de reconnaissance mutuels de l'ILAC et de l'EA pour les activités d'essai.

Les organismes d'accréditation signataires de ces accords pour les activités d'essai reconnaissent comme dignes de confiance les rapports couverts par l'accréditation des autres organismes

d'accréditation signataires des accords des activités d'essai.

Ce rapport d'essai ne peut être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING.
Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai

Les données fournies par le client sont sous sa responsabilité et identifiées en italique.

Rapport d'essai n°.: ULY22-013219-1

Projet: BOUP220063

WESSLING France S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 [0]4 74 99 96 20 \cdot Fax +33 [0]9 72 53 90 56 labo@wessling.fr \cdot www.wessling.fr

Le 13.06.2022

N° d'échantillon

рН

Autres > 2 mm

F7 F8 Désignation d'échantillon Unité Analyse physique Matières sèches - DIN ISO 11465 - Réalisé par laboratoire partenaire (Allemagne) Matière sèche % masse MB 93,1 Matières sèches - NF ISO 11465 - Réalisé par WESSLING Lyon (France) 97,4 (A) Matière sèche % masse MB 92,1 (A) Paramètres globaux / Indices Degré d'acidité Baumann-Gully - DIN EN 16502 - Réalisé par WESSLING Lyon (France) Degré d'acidité ml/kg MS Préparation d'échantillon Minéralisation à l'acide chlorhydrique (agressivité vis-à-vis des bétons) - DIN 4030-2 - Réalisé par WESSLING Lyon (France) Minéralisé à l'acide chlorhydrique 23/05/2022 23/05/2022 Cations, anions et éléments non métalliques Sulfates (SO4) - Méthode interne : SO4-IC-Agressivité béton - Réalisé par WESSLING Lyon (France) 1100 Sulfates (SO4) mg/kg MS 820 Sulfures totaux - DIN 38405-27 (D27) - Réalisé par laboratoire partenaire (Allemagne) Sulfure (S) mg/kg MS-A <0,2 <0,2 Sulfates et soufre total, extraction à l'HCl (Agressivité sur le béton et l'acier) - DIN ISO 22036 - Réalisé par laboratoire partenaire (Allemagne) Sulfate, soluble dans HCI (calc. SO4) mg/kg MS 960 900 Chlorures et sulfates - aggressivité sur acier - DIN EN ISO 10304 - Réalisé par laboratoire partenaire (Allemagne) Chlorures (CI) 1.3 0.98 mg/l Chlorures (CI) calc. en mmol/kg mmol/kg 0,15 0,11 Sulfates (SO4) mg/l 1,1 0,55 Sulfates (SO4) calc. en mmol/kg mmol/kg 0,046 0,023

22-073373-05

22-073373-06

Alcalinité et capacité bas	sique sur matières solides	- WEX 2178 - Réalisé	par laboratoire	partenaire (Allemagne)

% masse

pH sur matière solide - NF EN ISO 10390 - Réalisé par laboratoire partenaire (Allemagne)

Alcalinité pH 4,3	mmol/kg	7,9	7,3	
Capacité basique à pH 7,0	mmol/kg	<0,1	<0,1	
Tri sur sol - Méthode interne - Réalisé par WES	SLING Lyon (Fran	ce)		
Plastiques >2 mm	% masse	<0,10	<0,10	
Verre >2 mm	% masse	<0,10	<0,10	
Métaux > 2 mm	% masse	<0,10	<0,10	
Bois > 2 mm	% masse	<0,10	<0,10	

8,5

<0,10

8,4

<0,10

Rapport d'essai n°.: ULY22-013219-1

Projet: BOUP220063

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 13.06.2022

N° d'échantillon22-073373-0522-073373-06Désignation d'échantillonUnitéF7F8

Conductivité sur sol après extraction à l'eau - DIN ISO 11265 (1997-06) - Réalisé par WESSLING Lyon (France)

Conductivité [25°C]	μS/cm MS-A	92,0	101	
Résistivité électrique 25°C	Ohm · m	109	99,0	

MS : Matières sèches

MS-A: Matières séchées à l'air

MB : Matières brutes

< : résultat inférieur à la limite de quantification

Informations sur les échantillons

Date de réception :	13.05.2022	13.05.2022
Type d'échantillon :	Sol / remblais	Sol / remblais
Date de prélèvement :	05.05.2022	05.05.2022
Heure de prélèvement :	10:30	10:30
Récipient :	4*250ml VBrun WES002	4*250ml VBrun WES002
Température à réception (C°) :	14.4	14.4
Début des analyses :	13.05.2022	13.05.2022
Fin des analyses :	13.06.2022	13.06.2022
Préleveur :	KABORE	KABORE

Rapport d'essai n°.: ULY22-013219-1

Projet: BOUP220063

WESSLING France S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)9 72 53 90 56
labo@wessling.fr · www.wessling.fr

Le 13.06.2022

Informations sur vos résultats d'analyses :

 $Les \ seuils \ de \ quantification \ fournis \ n'ont \ pas \ \acute{e}t\acute{e} \ recalcul\acute{e}s \ d'après \ la \ matière \ s\`{e}che \ de \ l'\'{e}chantillon.$

Les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice.

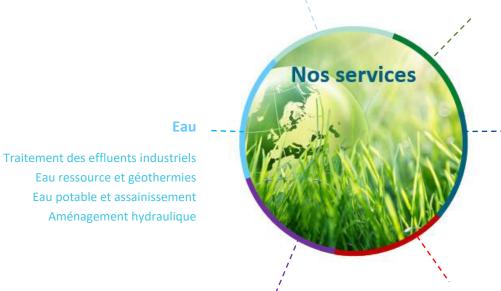
Les résultats des échantillons reçus à une température supérieure à 8°C, sont rendus avec réserve pour les analyses réalisées par WESSLING Lyon.

Signataire approbateur :

Audrey GOUTAGNIEUX

Directrice

Acteur majeur de l'ingénierie de l'environnement et de la valorisation des territoires


Mesure

Air ambiant
Air intérieur
Exposition professionnelle
Eau

Pollution atmosphérique

Environnement

Due diligence et conseil stratégique Sites et sols pollués Travaux de dépollution Dossiers réglementaires

Data

Systèmes d'information et data management Solutions pour le data management environnemental

Infrastructures

Déconstruction et désamiantage
Géotechnique
Fondations et terrassements
Ouvrages et structures
Risques naturels
Déchets et valorisation

Aménagement du territoire

Projet urbain

L'environnement au cœur des stratégies et projets Stratégie territoriale et planification

Référencements :

Portées communiquées sur demande

www.lne.fr